Very rare decays and lepton flavour violation searches at LHCb

Jessica Prisciandaro (on behalf of the LHCb collaboration)

Beyond the LHCb Phase-1 Upgrade workshop 28-31 May 2017

European Research Council Established by the European Commission UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

LHC schedule

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
		F	Run II	I				Rı	un IV				Rur	ר V
LS2						LS3					LS4			
	40 MHz GRADE	L	= 2 x 10)33	LHCb	Consolid	ation	L	$= 2 x 10^{-1}$) ³³	LHCb UPGR	Ph II ADE *	L = 2 z 300	x 10 ³⁴ fb ⁻¹
ATLAS Phase I	Upgr	L	= 2 x 10) ³⁴	ATLAS Phase	II UPO	GRADE	L L	= 5 x 10	C) ³⁴	ATLAS	5	HL-L $L = 5 c$	HC x 10 ³⁴
CMS Phase I	Upgr		300 fb ⁻¹		CMS Phase	II UPO	GRADE				CMS		3000) fb ⁻¹
Belle I	I	5 ab-1	L = 8 x	1035	50 0	ab ⁻¹								

(plot from Niels Tuning)

LHCb Upgrade Trigger Diagram

- LHCb expects to collect 300 fb⁻¹ with Phase-(full fate event building)
 for ATLAS and CMS)
- Softwayel Highresven Triggerulated statistics
 - some studies will take in account the expected gain from a full software trigger-

What do we need for Very Rare Decays?

- More opportunities in Run5 with an upgraded detector:
 - Improved electron reconstruction/selection
 - More precise downstream track reconstruction

Solution Keep a full software trigger that cover the all $p_{(T)}$ spectrum, is fundamental for many analyses

$B_{(s)} \rightarrow \mu \mu$: branching fraction

Very rare decay, FCNC and helicity suppressed

- Very sensitive to possible (pseudo)scalar new physics contributions
- Precisely predicted in the SM

$B_{(s)} \rightarrow \mu \mu$: branching fraction

Very rare decay, FCNC and helicity suppressed

Very sensitive to possible (pseudo)scalar new physics contributions

35 E

30 E

25

20

15

LHCb

BDT > 0.5

Total $- B_s^0 \rightarrow \mu^+ \mu^-$

• $B^0 \rightarrow \mu^+\mu^-$

----- Combinatorial

 $B \rightarrow h^+ h^-$

•··•···· $B^0_{(s)} \rightarrow \pi^-(K^-)\mu^+\nu_\mu$ $B^{0(+)} \rightarrow \pi^{0(+)} u^+ u^-$

Precisely predicted in the SM

$$\mathcal{B}_{\rm SM}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$$

$$\mathcal{B}_{\rm SM}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$$

- Uncertainty on BF(B_s→µµ) ~ 0.27 x 10⁻⁹ @ 300 fb⁻¹
- Ratio of BF is also a powerful test of MFV
- Predictions:
 - $\Delta r/r \sim [23, 27]\%$ (50 fb⁻¹)
 - $\Delta r/r \sim [11, 13]\%$ (300 fb⁻¹)

5.2

5.3

5.4

5.5

5.6

5.7

5.8 5.9

among the most sensitive FCNC owing to their small represented signation of the constraints on particles that daad as diskussed in detaidular Refrie, 2. Evenue of the second of the s cavarance and the isosostason sittive PANC and 0.25 clean experiment almagnation μ culated in Ref. 3 and include next-to-leading order decay, as discussed in detail in Ref. 4, 2 - when comparing Te sene et de les inevret der expectator, chiensternasis werkev/c] sale afference appreaded in the latest combined value Tevatroniction periforenties $[B_s^0]$, yielding and $B^0 \to \mu^+ \mu^-$ timeto The aretical conferration to the finite data include nextation leading order nd next-to Bess to Gazin group QCDnoor needed) CKM If Bath IS_approximated aftern heins undated with the International the Action of the Action o $B^0_{\ s}$ mbin non-param. $au_{\mathrm{H}}^{\mathrm{q}}$ $\alpha_{\rm S}$ Is Exptype other taway and the ty C. Bobeth et al Phys. Rev. Lett. 112, 101801 easily as y $(1.06 \pm 0.09) \times 10^{-10}$

$B_s \rightarrow \mu \mu$ - lifetime

Effective lifetime: complementary probe of new physics

- $\frac{1}{2}$ In the SM, only the heavy mass eigenstate decays to $\mu^+\mu^-$
 - $A_{\Delta\Gamma} = +1$
 - $\tau_{\mu\mu} = 1.610 \pm 0.012 \text{ ps}$
- Solution a Solution a Solution a Solution a Solution a Solution the precision needed is 0.038 ps

8

LHCb measurement:

$$\tau(B_s^0 \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \,\mathrm{ps}$$

$B_s \rightarrow \mu \mu$ - lifetime predictions

- ♀ can get down to 2% with 300 fb⁻¹

Lepton flavour violation

- Measurements involving b->sll decays showed deviations from the SM and hints of LU violation
- Several models explains LNU involving multi-TeV new physics particle
- LNU implies LFV if leptons are not mass eigenstate
- Experimentally reachable BF are predicted

	Theo	Exp		
B+->K+μ±τ∓	0.89x 10⁻⁶	<4.8x10 ⁻⁵		
B+->K+e±τ∓	3.84x10 ⁻¹⁰	<3.0x10 ⁻⁵		
B+->K+e±µ∓	0.52x10 ⁻⁹	<9.1x10 ⁻⁸		
B₅->μ±τ∓	1.06x 10⁻⁶	_		
B _s ->e±τ∓	4.57x10 ⁻¹⁰	_		
B₅->e±μ∓	1.73x10 ⁻¹²	<1.1x10 ⁻⁸		

Guadagnoli and Lane Physics Letters B 751 (2015) 54–58

Lepton flavour violation: ongoing analyses

₩ B_(s)->τμ

≩ B+->K+eμ:

- limit ~O(10-8) expected with Run1 data
- one order of magnitude (at least) improvement expected for Run5: sensitive to the NP region!
- no expected systematic limitations

₿ B_(s)->eµ:

- same constraint to theoretical models as B+->K+eµ

Lepton flavour violation: more prospects

$\stackrel{\scriptstyle >}{\scriptstyle >} \tau^- \rightarrow \mu^+ \mu^- \mu^-$:

- Several BSM theories predict an BF enhancement ^t (seesaw models..)
- EFT based on a U(2)ⁿ flavor symmetry:
 - explains anomalies in b->sll decays
 - BR (τ → 3μ[:])~ 10⁻⁹

Current limit :

$$\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-) < 4.6 \times 10^{-8} @ 90\% \text{ CL}$$

- not systematically limited
- similar to prospects for Belle2 @ 50 ab⁻¹
- confirmation from LHCb fundamental if any sign of NP

Many other LFV searches foreseen:

- B→K*eμ/τ, B→Φeμ
- B+→K+eτ

Extrapolation @ 300 fb⁻¹:

$$\mathcal{B}(\tau^- \to \mu^+ \mu^- \mu^-) < 3 \times 10^{-9}$$

B_(s)→ee

- Same considerations as for the Bs->µµ, in terms of SM predictions and NP
- B_(s)->ee is an excellent probe. NP can lift the helicity suppression
- BR(B_(s)->ee) may be enhanced
- Search for B_s ->ee ongoing in LHCb:
 - Expected limit Run1: [4-11]*10-9
 - Expected limit Run5: [3-9]*10-10
- Moreover, let's keep in mind that:
- $\epsilon_{ee}/\epsilon_{\mu\mu} \sim 1/5 \text{ (from B->K*J/\psi)}$
- better calorimeter performance can increase further the sensitivity
- No L0 bottleneck will be certainly beneficial

(arXiv:1703.10160 - Fleischer et al.)

 $B_{(s)} \rightarrow \tau \tau$

- Solution \Rightarrow MFV models which accomodate LFU anomalies predict enhancement of BR(B_(s)-> $\tau\tau$)
- SM predictions: $\mathcal{B}(B^0 \to \tau^+ \tau^-)_{\text{SM}} = (2.22 \pm 0.19) \times 10^{-8}$ $\mathcal{B}(B^0_s \to \tau^+ \tau^-)_{\text{SM}} = (7.73 \pm 0.49) \times 10^{-7}$

Run1 analysis:

$$\mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3} \text{ at } 95\% \text{ CL}$$

 $\mathcal{B}(B^0_s \to \tau^+ \tau^-) < 6.8 \times 10^{-3} \text{ at } 95\% \text{ CL}$

- First (B_s) and world best (B^0) limits
- Still very far from SM
- Tracking stations inside the magnet could improve the sensitivity

Majorana neutrinos

Solutions Massive sterile neutrinos can potentially $\frac{\overline{b}}{B^+}$ exist at any mass scale $\frac{B^+ \rightarrow X^- l^+ l'^+ \text{ at BABAR}}{B^+ \rightarrow X^- l^+ l'^+ \text{ at BABAR}}$ Conclusions

 μ_{γ}

Majorana neutrinos: what next?

- Inclusive search, ongoing with Run1 data: O(10) improvement expected over Belte limit
- Dedicated trigger in Run2 + mN > 1.5 GeV + lifetime > 10ps: background free analysis
- We can get an O(1000) improvement with 300 fb⁻¹
- ...but we might do even better:
- Improve (downstream) reconstruction will certainly be beneficial
- Some ideas already proposed (chambers inside magnet?)

Strange decays

- JHCb is a strange factory: cross-section ~ 10⁵ μb @ 13 TeV
- Growing interest in strange decays @ LHCb
- Analyses/studies with Run1 data:
- Search for K_s->μμ: BF(K_s->μμ) < 0.8x10⁻⁹ @ 90% CL (preliminary) Best upper limit!
- Search for Σ ->p $\mu\mu$:

No excess observed in the $\mu\mu$ mass spectrum (<u>CONF-2016-013</u> - paper coming soon)

- Prospects for K_s-> $\pi\pi ee$ (LHCb-PUB-2016-016)
- Prospects for K_s-> $\pi^0\mu\mu$ (LHCb-PUB-2016-017)
- K+ mass measurement : paper expected soon!

Strange decays - limitations

Very different signature compared to b-physics:

- Lower (transverse) momentum

 Fully-software trigger in Upgrade will strongly benefit the strange physics program:
 trigger efficiency O(100%) is possible for Kaon decays (limited by bandwidth and CPU)

Low p_T particles reconstructions is essential

Strange decays - some prospects

Run5, assuming a total trigger efficiency of 50%:

- Sensitive to BF (Ks-> $\mu\mu$)~1x10⁻¹¹
- Close to the SM prediction, region sensitive to NP
- Solution $I = K_L \pi^0 \mu \mu$ can be very sensitive to NP (ED models JHEP 09(2010) 017):
 - large theoretical uncertainty in the SM BF
 - precision measurement of the K_S-> $\pi^0\mu\mu$ BF will help to reduce K_L BF theoretical uncertainty
- \Im K_S-> $\pi^{0}\mu\mu$: also sensitivity to C9, measurement of q² dependence

Strange decays - more possibilities

- Given the enormous production of Kaon at LHCb not only short-lived Kaons can be studied
- 2x10¹⁰ reconstructed K+ decay per fb⁻¹ in the upgrade are expected (with full software trigger)
- \leq K⁺ -> π ⁺II decays with BF O(10⁻⁷) are accessible.

...but we can do much more

With the upgrade detector, why not using kaons from ϕ ?

- § 2x10¹³ φ->K+K⁻ per year expected
- Kinetic constraints and access to decays with neutrinos possible

Rare charm

$D^0 \rightarrow \mu^+ e^-$	$D_{(s)}^+ \rightarrow \pi^+ l^+ l^-$	$D^0 \to \pi^- \pi^+ V(\to ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D_{(x)}^+ \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D_{(c)}^+ \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	\mathcal{D}^{\dagger} , (φ, ρ, ω)
(8)	$D^0 \to K^{*0} l^+ l^-$	$D^0 \rightarrow \phi V(\rightarrow ll)$	$D_s^+ \to \pi^+ \phi(\to ll)$

LFV, LNV,	BNV			FC	NC				VMD	1	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10-4
$D^+_{(s)} \rightarrow h^- l^+ l^+$			0	D^0	$\rightarrow \mu\mu$	$D^0 \rightarrow \pi^0$	$\pi^{+}l^{+}l^{-}$	$D^0 \rightarrow D^0$	$\frac{K^{+}\pi^{-}V(-}{-}$	→ll) D	$^+ \rightarrow \pi^+ \phi$	$(\rightarrow II)$
$D^0 \to X^0 \mu^+ e^-$			D^{0}	$\rightarrow ee$		$D^0 \to \rho$ $D^0 \to K^+$	l+l- K-l+l-	$D^{\circ} \rightarrow D^{0} \rightarrow$	$\begin{array}{c} K V(\rightarrow \\ \gamma\gamma \end{array}$	ll) D D	${}^{0} \rightarrow K^{-}\pi$ ${}^{0} \rightarrow K^{*0}V$	$V^{+}V(\rightarrow ll)$ $V(\rightarrow ll)$
$D^0 \to X^{}l^+l^+$						$D^0 \rightarrow \phi$	l ⁺ l ⁻		<i>``</i>			

- Dominated by long distance contributions
- Possible to access short distance contribution away from resonances in some channels (D->X_u I+ I⁻)
- SM predictions typically <10⁻⁹ for non resonant decays

Solution Strain Strain

- Most precise results from LHCb analyses (No competitors for fully charged final states)
- Several analysis ongoing:
 - $D^0 \rightarrow \mu \mu$ (update Run1)
 - $D^+(s)$ \rightarrow hll, D^0 \rightarrow hhll (Run1+Run2)
 - $\Lambda_c \rightarrow pII (Run1+Run2)$

Rare charm - what can we expect?

Predictions @ 300fb⁻¹:

	BF(Short Distance)
D⁰->hh'µ+µ-	10 ⁻⁹ - 10 ⁻⁸
Dº->µ+µ-	10 ⁻¹¹ -10 ⁻¹⁰
D+->h'µ+µ-	10 ⁻¹⁰ -10 ⁻⁹
D _s +->h'µ+µ-	10 ⁻⁹ - 10 ⁻⁸
L->pµ+µ-	10 ⁻⁹ - 10 ⁻⁸
D ⁰ ->e+µ-	10 ⁻¹⁰ - 10 ⁻⁹

	Asymmetry uncertainty	Yields (LD+SD)
Dº->K+K-µ+µ-	1.6%	9K
Dº->Κ+ π-μ+μ-	5%	1.8K
D ⁰ ->Κ ⁻ π+μ+μ-	0.12%	600K
D ⁰ ->π ⁻ π+μ+μ-	0.4%	90K
D+->π+µ+µ-	0.08%	1800K

- We can reach sensitivities comparable with the SM prediction for the SD contributions
- More observable accessible AFB, ACP
- Combine constraints for all charm rare decays

Summary

- Phase-II upgrade will open the door to many new possibilities in VRD:
 - we will accumulate enough statistics to reach the SM predictions
 - we will be sensitive to possible NP effects in several channels
- Many analyses won't be systematically limited
- Better results can be achieved with an upgraded detector:
 - software trigger can be extremely beneficial for electrons and for strange physics program
 - upgraded ECAL can give better performance in electron reconstruction

BACKUP

	Run1	Run2	Upgrade (300fb-1)
D⁰->hh'µ+µ-	few 10-7	fewer 10-7	10 ⁻⁹ - 10 ⁻⁸
Dº->µ+µ-	few 10-9	fewer 10-9	10 ⁻¹¹ -10 ⁻¹⁰
D+->h'µ+µ-	few 10-8	fewer 10-8	10 ⁻¹⁰ -10 ⁻⁹
Ds+->h'µ+µ⁻	few 10-7	fewer 10-7	10 ⁻⁹ - 10 ⁻⁸
L->pµ+µ-	few 10-7	fewer 10-7	10 ⁻⁹ - 10 ⁻⁸
Dº->e+µ-	few 10-8	fewer 10-8	10 ⁻¹⁰ - 10 ⁻⁹