THEORY PROSPECTS FOR CP VIOLATION IN BEAUTY AND CHARM

> Luca Silvestrini INFN, Rome

- Introduction
- CP violation in Beauty
 - theoretical prospects
 - extrapolating the UTA
- CP violation in Charm
 - theoretical prospects
 - extrapolating the mixing analysis
- Conclusions

INTRODUCTION

- Search for virtual contributions of new heavy particles
- Use observables where SM contributions are either absent (BNV, LNV, LFV) or loopsuppressed (EWPO, FCNC).
- Advantage of flavour over EWPO: hierarchical structure of CKM provides very strong suppression of FCNC & CPV

CP VIOLATION IN BEAUTY

- CKM unitarity links measurements of CPviolating obs. (UT angles: α , β , γ) to CPconserving ones (UT sides: $B_{(s)}$ - $\overline{B}_{(s)}$ mixing, semileptonic decays)
 - Test the consistency of the SM both "visually" and quantitatively
 - Get constraints on deviations from the SM

compatibility plots

A way to "measure" the agreement of a single measurement with the indirect determination from the fit using all the other inputs: test for the SM description of the flavour physics

Color code: agreement between the predicted values and the measurements at better than 1, 2, ... $n\sigma$

Updates from UTfit

tensions? not really.. still that V_{ub} inclusive

results from the Wilson coefficients

Generic: $C(\Lambda) = \alpha/\Lambda^2$, $F_i \sim 1$, arbitrary phase

 $\alpha \sim 1$ for strongly coupled NP

To obtain the lower bound for loop-mediated contributions, one simply multiplies the bounds by α_s (~ 0.1) or by α_w (~ 0.03).

 $\label{eq:alpha} \begin{array}{l} \alpha \sim \alpha_{w} \text{ in case of loop coupling} \\ \text{through weak interactions} \\ \text{NP in } \alpha_{w} \text{ loops} \\ \Lambda > 1.5 \ 10^{4} \ \text{TeV} \end{array}$

Best bound from ϵ_{K} dominated by CKM error CPV in charm mixing follows, exp error dominant Best CP conserving from Δm_{K} , dominated by long distance B_d and B_s behind, errors from both CKM and B-parameters

results from the Wilson coefficients

NMFV: $C(\Lambda) = \alpha \times |F_{SM}|/\Lambda^2$, $F_i \sim |F_{SM}|$, arbitrary phase

 $\alpha \sim 1$ for strongly coupled NP

To obtain the lower bound for loop-mediated contributions, one simply multiplies the bounds by α_s (~ 0.1) or by α_w (~ 0.03).

 $\label{eq:alpha} \begin{array}{l} \alpha \sim \alpha_{w} \text{ in case of loop coupling} \\ \text{through weak interactions} \\ \text{NP in } \alpha_{w} \text{ loops} \\ \Lambda > 3.4 \text{ TeV} \end{array}$

If new chiral structures present,

 $\epsilon_{\mbox{\tiny K}}$ still leading

- B_(s) mixing provides very stringent constraints, especially if no new chiral structures are present
- Constraining power of the various sectors depends on unknown NP flavour structure.

THEORETICAL PROSPECTS: ANGLE MEASUREMENTS

- γ from B \rightarrow DK theoretically clean (up to 10-7)
- sin 2 β from B \rightarrow J/ ψ K_S: theoretical uncertainty comes from V_{ub}V_{us} contribution

 $A(B^0 \to J/\psi K^0) = V_{cb}^* V_{cs}(E_2 - P_2) + V_{ub}^* V_{us}(P_2^{\text{GIM}} - P_2)$

- estimate it using SU(3)-related b \rightarrow d transitions B_s \rightarrow J/ ψ K_s and B \rightarrow J/ ψ \pi^o where the second term is not doubly Cabibbo suppressed Fleischer '99; Ciuchini, Pierini & LS '05; ...
- th error scales with the uncertainty on control channels
- under control (Belle II can help here)

De Bruyn & Fleischer '15

Beyond the LHCb Phase-1 Upgrade Elba, 28-31/5/2017

THEORETICAL PROSPECTS: ANGLE MEASUREMENTS

- LHCb can contribute to the extraction of α with the combined analysis of $B \rightarrow \pi\pi$, $B_s \rightarrow KK$ decays Fleischer '99, '07; Franco et al. '12; LHCb '15; Fleischer et al. '16
- β_s from $B_s \rightarrow J/\psi \phi$: theoretical uncertainty comes again from $V_{ub}V_{us}$ contribution
 - estimate using SU(3)-related b \rightarrow d transitions more difficult since ϕ not pure flavour octet
 - in the literature small th uncertainty found

De Bruyn & Fleischer '15

probably under control, but to be studied in more detail

Beyond the LHCb Phase-1 Upgrade Elba, 28-31/5/2017

THEORETICAL PROSPECTS: SIDE MEASUREMENTS

- Exclusive V_{ub} and V_{cb} : expect LQCD $F_{D*}(1) @ 0.5\%$ and $B \rightarrow \pi \sim 1\%$ in 2025 Tarantino @ What Next, based on SuperB
- Recently raised caveats on parameterization of q^2 dependence in V_{cb}^{excl} can be avoided with lattice + data Bigi, Gambino & Schacht '17; Grinstein & Kobach '17
- Expect V_{cb} @ ~ 1% and V_{ub} @ ~ 2% from Belle II $\,$ LHCb contributes with ratio
- LQCD will provide f_{Bs}, B_{Bs} and B_s/B_d ratios @ 0.5% excellent prospects for the mixings Tarantino @ What Next based on Sur

Beyond the LHCb Phase-1 Upgrade Elba, 28-31/5/2017

Luca Silvestrini Tarantino @ What Next, based on SuperB

Parameter			Error		
1 drameter	Now	$50/\mathrm{fb}$	300/fb	1000/fb	$3000/\mathrm{fb}$
$\Delta M_d [\mathrm{ps}^{-1}]$	0.002	0.0005	0.0002	0.0001	0.00006
ΔM_s [ps ⁻¹]	0.021	0.005	0.002	0.001	0.0006
$\sin 2\beta$	0.022	0.008	0.0026	0.0018	0.001
γ [°]	6.5	0.9	0.4	0.2	0.09
$\alpha [^{\circ}]$	5.5	1	Belle II		
β_s [°]	4	0.26	0.11	0.06	0.034
V_{us}	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$			
V_{cb}	2.7%	1%	Belle II		
V_{ub}	10%	1%	Belle II		
x		$1.5\cdot 10^{-4}$	$4.5\cdot10^{-5}$	$3\cdot 10^{-5}$	$1.5\cdot 10^{-5}$
y		10^{-4}	$3\cdot 10^{-5}$	$2\cdot 10^{-5}$	10^{-5}
q/p		0.01	0.003	0.002	0.001
ϕ [°]		3	0.9	0.6	0.3
A_{Γ}		$4 \cdot 10^{-5}$	$12 \cdot 10^{-6}$	$8 \cdot 10^{-6}$	$4 \cdot 10^{-6}$
$\alpha_s(M_Z)$	0.0005	0.0002			
m_t	$760 { m ~MeV}$	$250 { m ~MeV}$	theory limited		
m_b	$50 { m MeV}$	$10 { m MeV}$			
B_K	1.3%	0.1%			
F_{B_s}	$5 { m MeV}$	$1 {\rm MeV}$			
F_{B_s}/F_{B_d}	1.4%	0.5%			
$F_{B_s}\sqrt{B_{B_s}}$	3.8%	3%			
ξ	2.5%	0.5%			

Beyond Elba, 2 13

Parameter			Error			
	Now	$50/{ m fb}$	$300/{\rm fb}$	$1000/\mathrm{fb}$	$3000/{\rm fb}$	
$\bar{\rho}$ (SM fit)	0.002	0.0039	0.0023	0.0013	0.00064	◀───
$\bar{\eta}$ (SM fit)	0.021	0.0037	0.0019	0.0013	0.00068	▲ —
γ [°] (SM fit)	6.5	0.6	0.35	0.2	0.09	Crucial to improve
α [°] (SM fit)	5.5	0.6	0.37	0.2	0.1	SM predictions
β [°] (SM fit)	4	0.2	0.10	0.07	0.04	Sin predictions
β_s [°] (SM fit)	4	0.011	0.057	0.004	0.0023	of rare decays!
$\bar{\rho}$ (NP fit)	0.002	0.006	0.0034	0.0028	0.0022	←
$\bar{\eta}$ (NP fit)	0.021	0.006	0.0053	0.0061	0.0052	▲
γ [°] (NP fit)	6.5	0.9	0.4	0.2	0.09	
α [°] (NP fit)	5.5	1	0.5	0.45	0.36	
β [°] (NP fit)	4	0.8	0.7	0.7	0.7	Need
β_s [°] (NP fit)	4	0.017	0.016	0.016	0.016	
C_{ε_K}	0.14	0.065	0.065	0.065	0.064	progress in
C_{B_d}	0.15	0.024	0.024	0.024	0.022	
Φ_{B_d}	2.8	0.48	0.36	0.36	0.35	
C_{B_s}	0.087	0.02	0.02	0.02	0.02	and lattice
Φ_{B_s}	0.96	0.26	0.11	0.063	0.038	Standy
$\Phi_{M_{12}}$ [°]	2.5	0.4	0.1	0.08	0.04	
$\Phi_{\Gamma_{12}}$ [°]	—	1.2	0.4	0.24	0.12	 ← improvement

Frascati, 26/22 Preliminary Silvestrim

TREE-LEVEL UT & NP WITH 300/fb

Plus improved measurements of A^{SL}_{d,s}

Beyond the LHCb Phase-1 Upgrade Elba, 28-31/5/2017

CP VIOLATION IN D MIXING

- D mixing is described by:
 - Dispersive D \rightarrow D amplitude M₁₂
 - SM: long-distance dominated, not calculable
 - NP: short distance, calculable w. lattice
 - Absorptive D \rightarrow D amplitude Γ_{12}
 - SM: long-distance, not calculable
 - NP: negligible
 - Observables: $|M_{12}|$, $|\Gamma_{12}|$, Φ_{12} =arg(Γ_{12}/M_{12})

discussion based on Grossman, Kagan, Ligeti, Perez, Petrov & LS, eternally in preparation Beyond the LHCb Phase-1 Upgrade Elba, 28-31/5/2017

- $V_{cd}V_{ud}^* + V_{cs}V_{us}^* + V_{cb}V_{ub}^* = \lambda_d + \lambda_s + \lambda_b = 0$
- eliminate λ_{d} and take λ_{s} real (all physical results convention independent)
- imaginary parts suppr. by r=Im λ_b/λ_s =6.5 10-4
- M_{12} , Γ_{12} have the following structure:
 - $\lambda_{s^{2}} \left(\mathsf{f}_{dd} + \mathsf{f}_{ss} 2\mathsf{f}_{ds} \right) + 2\lambda_{s}\lambda_{b} \left(\mathsf{f}_{dd} \mathsf{f}_{ds} \mathsf{f}_{db} + \mathsf{f}_{sb} \right) + O(\lambda_{b^{2}})$
 - GIM mechanism \Leftrightarrow SU(3)
 - $-\lambda_s^2 \varepsilon^2 + \lambda_s \lambda_b \varepsilon$
- CPV effects at the level of r/ ϵ ~2 10-3 ~ 1/8° for "nominal" SU(3) breaking ϵ ~30%

"REAL SM" APPROXIMATION

- Given present experimental errors, it is perfectly adequate to assume that SM contributions to both M_{12} and Γ_{12} are real
- all decay amplitudes relevant for the mixing analysis can also be taken real
- NP could generate a nonvanishing phase for M_{12}

CPV IN MIXING TODAY

 From a global analysis of D mixing data we extract the mixing parameters:

 $|M_{12}| = (4 \pm 2)/fs$, $|\Gamma_{12}| = (14 \pm 1)/fs$ and $\Phi_{12} = (0 \pm 3)^{\circ}$ ([-6,9]° @ 95% prob.)

BEYOND THE "REAL SM"

- Foreseen precision with 300/fb may clash with the "real SM" approximation
 - Relax the assumption of real decay amplitudes
 - In principle, if decay amplitudes are not real, they affect the extraction of $\phi :$

 $\phi \rightarrow \phi + \delta \phi_f$, with $\delta \phi_f = \arg(\overline{A}_f/A_f)$ (f CP eig.)

- for CA and DCS decays, $\delta \phi_f$ negligible
- for SCS decays, $\delta \phi_f = A_{CP}^{dir}(D \rightarrow f) \cot \delta_f$

($\delta_f O(1)$ strong phase difference)

– current data on direct CPV imply $\delta \varphi_{\rm f} \thicksim 10^{\text{-3}}$

Beyond the LHCb Phase-1 Upgrade Elba, 28-31/5/2017

BEYOND THE "REAL SM" II

- CPV contributions to Γ_{12} enhanced by $1/\epsilon$:
 - $\lambda_{s}^{2} \epsilon^{2} + \lambda_{s} \lambda_{b} \epsilon$

while this is not the case for $\delta\phi_{f}$

- can go beyond the "real SM" approximation by adding one universal phase $\phi_{\Gamma12}$ and fitting for ϕ_{M12} and $\phi_{\Gamma12}$

CPV IN D MIXING W. 300/fb

- Expected uncertainties with 300/fb:
 - $\delta x=1 \ 10^{-4}$, $\delta y=0.5 \ 10^{-4}$, $\delta |q/p|=5 \ 10^{-3}$, $\delta \phi=1^{\circ}$ (from K_sππ); $\delta y_{CP}=\delta A_{\Gamma}=2 \ 10^{-6}$ (from K⁺K⁻)
- Allow to determine $\phi_{\Gamma 12}$ with a reach on CPV well below the degree:
 - $\delta \phi_{\Gamma}$ =0.4° (7 mrad) and
 - $\delta \phi_{M12}$ =0.1° (2 mrad)

with a sensitivity to NP above 10⁵ TeV

Beyond the LHCb Phase-1 Upgrade Elba, 28-31/5/2017

CONCLUSIONS

- LHCb upgrade with 300/fb will allow to improve constraints on NP from the UT analysis without hitting the theoretical uncertainties wall
- Theoretical progress on long-distance contributions in D mixing might further improve the NP sensitivity

CONCLUSIONS

- CP violation in penguin-dominated B decays also very interesting, but requires theoretical breakthrough
- Lattice might help with CP violation in SCS D decays on the 300/fb time scale
- Broad spectrum of measurements with 300/fb makes it a wonderful opportunity to test the SM and look for NP

BACKUP SLIDES

Updates from UTfit

Updated value

updated for LHCP17

2D average inspired by D'Agostini skeptical procedure (hep-ex/9910036) with σ =1. Very similar results obtained from a 2D a la PDG procedure.

 V_{cb} and V_{ub}

$$|V_{cb}| = (40.5 \pm 1.1) \ 10^{-3}$$

uncertainty ~ 2.4%

$$|V_{ub}| = (3.74 \pm 0.23) \ 10^{4}$$

uncertainty ~ 5.6%

updated for LHPC17

COMPATIBILITY PLOT FOR ϵ_{κ}

- Currently no tension in $\epsilon_{\rm K}$
- Theoretical improvements needed to fully exploit NP sensitivity: longdistance contributions, B-parameter, D=8 operators...

Beyond the LHCb Phase-1 Upgrade Elba, 28-31/5/2017