# Prospects for CP violation in Beauty and Charm at LHCb Beyond the LHCb Phase-1 Upgrade

### Dan Johnson on behalf of the LHCb collaboration

29<sup>th</sup> May 2017



D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

9<sup>th</sup> May 2017 1 / 28



### Today

Snapshot of LHCb CP violation studies & estimates for Phase-2 sensitivity

I will:

- refer to the milestones indicated above
- emphasise theoretically clean UT angle measurement & charm CPV
- highlight systematic & detector challenges in parallel
- return to the issue of external inputs from CLEO and BES-III at the end

## Introduction

Baryogenesis tells us that there **must** be New Physics in CP violation. Can we find it in flavour-changing processes in the quark sector? Great progress:



SM picture accounts for wide range of measured CP observables

D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

# Introduction

But there is room for more:

- Assume no NP at tree-level
- Allow common (loop-level) NP effect in  $B^0$  and  $B_s^0$  mixing
- $M_{12} \rightarrow M_{12}^{SM}(\rho,\eta)(1+h_d \exp(2i\sigma_d))$  $B^0$  mixing



 $B_s^0$  mixing



Only limit amplitude of NP effects in  $B_{d,s}$  mixing to < 30%! (PRD89 033016 (2014))

D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

<sup>un</sup> May 2017 4 / 28

# Theoretically clean UT measurement

D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

き▶ ◀ ≣ ▶ ■ 夕 � Œ 29<sup>th</sup> May 2017 5 / 28

(日) (同) (三) (三)

- Least well-known UT angle
- Only one that can be measured at tree-level alone  $(\frac{\sigma_{\rm th}^{\rm tree}}{\gamma} < O(10^{-7}))$  (JHEP 01 051 (2013))
- Sensitive NP probe: compare direct and indirect determination: ۰



• Direct measurements:  $\gamma = 73.2^{+6.3\circ}_{-7.0}$  Indirectly:  $\gamma = 66.9^{+0.94\circ}_{-3.44}$ 

▶ NB: NP could manifest at tree-level - still room for 10% modifications to  $C_1$  and  $C_2$ (PRD 92 033002 (2015))

イロト イヨト イヨト イヨト

Exploit interference between decays via charm to a common final state

$$X_b \to [F]_{Y_c} Z$$
 (e.g.  $B^{\pm} \to [K^{\mp} \pi^{\pm}]_D K^{\pm})$ 

• 
$$F$$
 accessible to  $Y_c$  and  $\overline{Y_c}$ :

•  $Z \in \{K, \pi, K^*, K\pi\pi...\}$ 



 $\gamma$  is the weak phase difference between decay amplitudes with  $b\to c\bar{u}s$  and  $b\to u\bar{c}s$  transitions

D. Johnson (CERN)

# 2-body 'ADS' : $B^{\pm} \rightarrow [\pi^{\pm} K^{\mp}] h^{\pm}$



• Suppressed: 550 candidates in Run 1

• Large interference;  $8\sigma$  CPV (PLB 760 117)

# $\mathsf{TD}: B^0_s o D^\pm_s K^\mp$



• 1,800 candidates in 1 fb<sup>-1</sup>(JHEP 1411 060) • Measures  $\gamma - 2\beta_s$ ;  $B_s^0 \rightarrow J/\psi hh$  input

# 'GGSZ' : $B^{\pm} \rightarrow [K^0_{\rm s}h^+h^-]h^{\pm}$



- Mod. indep.; 2,600 candidates in Run 1
- Reduced  $\gamma$  ambiguity (JHEP 1410 097)

### Many more

- ADS/(pseudo-)GLW 2/4 body (PLB 760 117)
- GLS  $B \rightarrow (K^0_S K^{\mp} \pi^{\pm}) K$  (PLB 733 36)
- ADS  $B^0 \rightarrow DK^{*0}$  (PRD 90 112002)
- Dalitz  $B^0 \rightarrow [hh]_D K \pi$  (PRD 93 112018)
- ADS  $B^0 \rightarrow [hh\pi^0]_D K$  (PRD 91 112014)
- GGSZ  $B^0 \rightarrow DK^{*0}$  (JHEP 06 131)
- ADS/GLW  $B^{\pm} \rightarrow DK^{*\pm}$  (LHCb-CONF 2016 014)

### $B^+$ combination



D. Johnson (CERN)

Phase 2 upgrade CPV at LHCt

29<sup>th</sup> May 2017 9 / 2

### Result for $\gamma_{\rm (JHEP~12~087)}$



- $\bullet\,$  Improves the previous LHCb-only determination by  $2^\circ$
- Reaches Run 1 target sensitivity; LHCb dominates world average
- Good agreement with the B-factory results:

BaBar: 
$$\gamma = (70 \pm 18)$$
  
Belle:  $\gamma = (73^{+13}_{-15})^{\circ}$ 

D. Johnson (CERN)

9<sup>th</sup> May 2017 10

Need  $\sigma^{
m direct}(\gamma) < 1^{\circ}$  to match indir. determination ( $\sigma_{
m LQCD}$  will fall more)

### Statistical uncertainties:

| Sample          | $\mathcal{L}$ ( fb $^{-1}$ ) | Units of Run-1 |                                                                                        |
|-----------------|------------------------------|----------------|----------------------------------------------------------------------------------------|
| Run 1           | 3                            | 1              |                                                                                        |
| Run 2           | 5                            | 3              | $\sigma(bar{b})  ightarrow 2\sigma(bar{b}); \uparrow \epsilon({ m trig}/{ m offline})$ |
| Upgrade         | $\sim$ 50                    | $\sim 60$      | $\epsilon_{trig}^{hadrons}  ightarrow 2\epsilon_{trig}^{hadrons}$                      |
| Phase-2 Upgrade | $\sim$ 300                   | $\sim$ 360     |                                                                                        |

イロト イ団ト イヨト イヨト 三日

Need  $\sigma^{direct}(\gamma) < 1^{\circ}$  to match indir. determination ( $\sigma_{LQCD}$  will fall more)



### Prospects for existing systematic uncertainties:

- Diverse systematic uncertainty exposure
  - GGSZ: Dalitz efficiency. Insensitive to B prod or K det. asymmetry
  - ADS/GLW: inst. charge asymmetries/PID
  - TD: decay time resolution/acceptance
  - Differences between methods (systematic?) or modes (NP?)
- One's signal is another's background: constrain CPV in part. reco. modes
- Improved precision on charm inputs (more later)

### Prospects for existing systematic uncertainties:

- Diverse systematic uncertainty exposure
  - GGSZ: Dalitz efficiency. Insensitive to B prod or K det. asymmetry
  - ADS/GLW: inst. charge asymmetries/PID
  - TD: decay time resolution/acceptance
  - Differences between methods (systematic?) or modes (NP?)
- One's signal is another's background: constrain CPV in part. reco. modes
- Improved precision on charm inputs (more later)

### Must account for:

- Mixing and CPV in the kaon system (as we do for charm) and regeneration effects
- Correlations between systematic uncertainties in different modes

### Prospects for existing systematic uncertainties:

#### Diverse systematic uncertainty exposure

- GGSZ: Dalitz efficiency. Insensitive to B prod or K det. asymmetry
- ADS/GLW: inst. charge asymmetries/PID
- TD: decay time resolution/acceptance
- Differences between methods (systematic?) or modes (NP?)
- One's signal is another's background: constrain CPV in part. reco. modes
- Improved precision on charm inputs (more later)

### Must account for:

- Mixing and CPV in the kaon system (as we do for charm) and regeneration effects
- Correlations between systematic uncertainties in different modes

### Increased statistics and detector capability: power in combination

- Improved calorimetry for exploitation of  $\pi^0$  D final states or  $D^{*0}$ ,  $D_s^{*\pm}$
- Extended soft track reconstruction for higher multiplicity B and D final states
- Widen pool of modes:  $D \to KK\pi\pi$ ,  $D \to K_{\rm S}^0\pi\pi\pi^0$ ,  $B \to D^{*0}K$ ,  $B_s^0 \to D_s^{*\pm}K$

D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

# Theoretically clean UT measurement

D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

 $\beta, \beta_s$ 

29<sup>th</sup> May 2017 14 / 2

3

(日) (周) (三) (三)

# The UT angle $\beta$

- Accessed via interference in  $B^0$  mixing and decay
- Theory uncertainty due to mode-dependent role of penguin amplitudes
- Data-driven methods to control penguin pollution

Indirect determination (CKMfitter):  $sin(2\beta) = 0.7094^{+0.0098}_{-0.0094}$ 



D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

29<sup>th</sup> May 2017 15 / 2

# The UT angle $\beta$

• CKM hierarchy in  $b \to c\bar{c}s$  transitions  $\Rightarrow$  negligible theory uncertainty  $\Rightarrow$  'gold-plated' mode  $B^0 \to J/\psi K_s^0$ 

• TD flavour tagged ( $\epsilon_{
m eff}=$  3%) Run 1 study of 42,000  $B^0, \overline{B}^0$  decays (PRL 115 031601)

#### Systematic uncertainties 0.4Signal yield asymmetry 0.3LHCb • Main $\sigma_{\text{syst}}(S_{J/\psi K^0_{\alpha}})$ : possible bg tagging 0.2asymmetry ((2.5%)). Others < 1%0.1• Main $\sigma_{\text{syst}}(C_{J/\psi K_{c}^{0}})$ : $\Delta m$ input ((10%)). -0.1-0.2FT calib & z-scale ((7%)) -0.35 10 15

Approaching **B-factory precision**:  $S = 0.731 \pm 0.035 \pm 0.020$ ;  $C = -0.038 \pm 0.032 \pm 0.005 \Rightarrow sin(2\beta) = 0.746 \pm 0.030$ 

Contribution of sub-dominant amplitudes well below experimental uncertainties  $(\mathcal{Q}(\%))_{\alpha}$ 

D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

 $t \,(\mathrm{ps})$ 

# The UT<sub>s</sub> angle $\beta_s$

- CPV phase in int. between  $B_s^0$  mixing and decay (assume |q/p| = 1 for now)
- Unlike  $B^0$ ,  $\Delta\Gamma/\Gamma$  not small; access  $\beta_s$  in TD & untagged effective-lifetime studies
- Data-driven methods to control penguin pollution;  $\phi_s \approx -2\beta_s$

### Indirect determination (CKMfitter): $\beta_s = 0.01852 \pm 0.00032$



# The UT<sub>s</sub> angle $\beta_s$

- Again, smallest theory uncertainty in  $b 
  ightarrow c ar{c} s$  transitions
- $B_s^0 \rightarrow J/\psi \phi$ : Run 1 TD, tagged ang. analysis 96k  $B_s^0 \rightarrow J/\psi K^+ K^-$  ( $\epsilon_{eff} = 3.9\%$ )
  - ▶  $B \rightarrow VV$ : ang. analysis disentangles CP odd/even components(PRL 114 041801)
- $B_s^0 
  ightarrow J/\psi \, \pi^+ \pi^-$ : Run 1 TD analysis 22k signal candidates ( $\epsilon_{
  m eff} = 3.9\%$ )
  - ► Final state found to be dominantly CP-even(PLB 736 186)



### $\phi_s^{c\bar{c}s} = -0.010 \pm 0.039 \,\mathrm{rad}$

Contribution of sub-dominant amplitudes well below experimental uncertainties  $(\mathcal{Q}(\%))_{\alpha}$ 

D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

29<sup>th</sup> May 2017 18 / 28

#### Phase 2 penguin pollution:

#### No immediate show-stoppers

- φ<sub>s</sub> DCS penguin will be important
   Assuming SU(3); pollution studied in B<sup>0</sup> → J/ψ ρ<sup>0</sup> and B<sup>0</sup><sub>s</sub> → J/ψ K̄<sup>\*0</sup> (PLB 742 38) (JHEP 11 082)
   ★ Δφ<sub>s</sub> = 1.4<sup>+9.8</sup><sub>-12.6</sub><sup>+2.6</sup><sub>-2.3</sub>mrad
   Expect control Phase 2 pollution:
  - Expect control Phase 2 pollution:  $\sigma(\phi_s) = 0.9 \, (stat), 1.2 \, (syst) \, mrad$
- Control  $\beta$  penguin pollution using SU(3) and  $B_s^0 \rightarrow J/\psi \rho^0$ ; will be a challenge in Phase 2





May 2017 19 / 2

#### Systematic uncertainties:

Well controlled. No problems anticipated, even at Phase 2:

- Apply full angular analysis to  $B^0_s o J\!/\psi \, \pi^+\pi^-$  as for  $B^0_s o J\!/\psi \, \phi$
- Model-independent S-wave description in J/ $\psi \pi^+\pi^-$
- High pile-up  $\Rightarrow$  maintain PV association & decay time resolution
- Lower momentum reconstruction  $\Rightarrow$  improved flavour-tagging

< ロト < 同ト < ヨト < ヨト

#### Systematic uncertainties:

Well controlled. No problems anticipated, even at Phase 2:

- Apply full angular analysis to  $B^0_s o J\!/\psi \, \pi^+\pi^-$  as for  $B^0_s o J\!/\psi \, \phi$
- Model-independent S-wave description in J/ $\psi \pi^+\pi^-$
- High pile-up  $\Rightarrow$  maintain PV association & decay time resolution
- Lower momentum reconstruction  $\Rightarrow$  improved flavour-tagging

#### Exploiting new modes in the high statistics era

- Already widening the net:
  - ►  $B_s^0 \to D_s^+ D_s^-$ :  $\phi_s^{c\bar{c}s} = 0.02 \pm 0.17 \pm 0.02 \, \mathrm{rad}$  (PRL 113 211801)
  - ►  $B^0 \to D^+D^-$ :  $S = -0.54^{+0.17}_{-0.16} \pm 0.05$ ,  $C = 0.26^{+0.18}_{-0.17} \pm 0.02$  (prl 117 261801)
    - \*  $\epsilon_{\rm eff} = 8.1\%!$
    - **\*** Benefit from upgrade  $\epsilon_{hadrons}^{trigger}$
  - Penguin-free  $B^0 \rightarrow D_{CP} \pi^+ \pi^-$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

#### Systematic uncertainties:

Well controlled. No problems anticipated, even at Phase 2:

- Apply full angular analysis to  $B^0_s o J/\psi \, \pi^+\pi^-$  as for  $B^0_s o J/\psi \, \phi$
- Model-independent S-wave description in J/ $\psi \, \pi^+ \pi^-$
- High pile-up  $\Rightarrow$  maintain PV association & decay time resolution
- Lower momentum reconstruction  $\Rightarrow$  improved flavour-tagging

#### Exploiting new modes in the high statistics era

- Already widening the net:
  - ►  $B_s^0 \to D_s^+ D_s^-$ :  $\phi_s^{c\bar{c}s} = 0.02 \pm 0.17 \pm 0.02 \, \mathrm{rad}$  (prl 113 211801)
  - ►  $B^0 \to D^+ D^-$ :  $S = -0.54^{+0.17}_{-0.16} \pm 0.05$ ,  $C = 0.26^{+0.18}_{-0.17} \pm 0.02$  (prl 117 261801)
    - $\star \epsilon_{\rm eff} = 8.1\%!$
    - **\*** Benefit from upgrade  $\epsilon_{hadrons}^{trigger}$
  - Penguin-free  $B^0 \rightarrow D_{CP} \pi^+ \pi^-$
- Wide range of b 
  ightarrow q ar q q' transitions;
  - differing penguin roles:  $B_s^0 \to \phi \phi, B_s^0 \to K^* \bar{K}^*, B_s^0 \to K_s^0 K \pi$
  - ▶ improved calorimetry:  $B_s^0 \to (J/\psi \to e^+e^-)\phi$ , penguins in  $B_{s,d}^0 \to J/\psi \pi^0$

イロト 不得下 イヨト イヨト

#### Systematic uncertainties:

Well controlled. No problems anticipated, even at Phase 2:

- Apply full angular analysis to  $B^0_s o J/\psi \, \pi^+\pi^-$  as for  $B^0_s o J/\psi \, \phi$
- Model-independent S-wave description in J/ $\psi \, \pi^+ \pi^-$
- High pile-up  $\Rightarrow$  maintain PV association & decay time resolution
- Lower momentum reconstruction  $\Rightarrow$  improved flavour-tagging

### Exploiting new modes in the high statistics era

- Already widening the net:
  - ►  $B_s^0 \to D_s^+ D_s^-$ :  $\phi_s^{c\bar{c}s} = 0.02 \pm 0.17 \pm 0.02 \, \mathrm{rad}$  (PRL 113 211801)
  - ►  $B^0 \to D^+D^-$ :  $S = -0.54^{+0.17}_{-0.16} \pm 0.05$ ,  $C = 0.26^{+0.18}_{-0.17} \pm 0.02$  (prl 117 261801)
    - $\star \epsilon_{\rm eff} = 8.1\%!$
    - ★ Benefit from upgrade  $\epsilon_{hadrons}^{trigger}$
  - Penguin-free  $B^0 \rightarrow D_{CP} \pi^+ \pi^-$
- Wide range of b 
  ightarrow q ar q q' transitions;
  - differing penguin roles:  $B_s^0 \to \phi \phi, B_s^0 \to K^* \bar{K}^*, B_s^0 \to K_s^0 K \pi$
  - ▶ improved calorimetry:  $B_s^0 \to (J/\psi \to e^+e^-)\phi$ , penguins in  $B_{s,d}^0 \to J/\psi \pi^0$
- In the  $\sigma(\gamma) < 1^{\circ}$  era,  $B_s^0 \to D_s^{\pm} K^{\mp}$  constrains  $\beta_s$  without penguin pollution

### **CP** violation in Charm

э

<ロ> (日) (日) (日) (日) (日)

- SM predicts small mixing and  $\mathcal{O}(10^{-3})$  CPV
- Mixing firmly established (significant y ≠ 0 a good start for indirect CPV searches)
- CPV remains elusive:
  - Direct: charged c-hadrons or time-integrated D<sup>0</sup>
  - Indirect: time-dependent D<sup>0</sup>



#### Evolution of LHCb sensitivity (beginning from the W.A.)

### • LHCb competes with B-factories:

- time resolution
- huge LHC  $\sigma_{\text{prod}}(c\bar{c})$

|        | $x(10^{-3})$ | $y(10^{-3})$ | $ q/p (10^{-3})$ | $\Phi(mrad)$ |
|--------|--------------|--------------|------------------|--------------|
| Run 1  | 1.2          | 0.5          | 59               | 89           |
| Run 2  | 0.9          | 0.4          | 44               | 70           |
| Upg.   | 0.2          | < <b>0.1</b> | 8                | 14           |
| Phase2 | 0.09         | <0.05        | 4                | 6            |

# CPV in charm

### Searching for direct CPV: focus on Cabibbo suppressed decays

**(**) Isolate  $D^0 \rightarrow h^+ h^-$  direct component & reduce systematics:

Approaching the SM threshold (PRL 116 191601)

$$\Delta A_{CP} = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) = (-0.10 \pm 0.08 \pm 0.03)\%$$

2 Charged  $D^{\pm}$  and  $D_s^{\pm}$  decays

Most precise results are (JHEP 10 025)

$$\Delta \mathcal{A}_{D^+ \to \mathcal{K}^0_{\mathbb{S}} \mathcal{K}^+} = (0.3 \pm 1.7 \pm 1.4) \times 10^{-3} \text{ and } \Delta \mathcal{A}_{D^+_{\mathbb{S}} \to \mathcal{K}^0_{\mathbb{S}} \pi^+} = (3.8 \pm 4.6 \pm 1.7) \times 10^{-3}$$

### In the Phase 2 era:

- Low momentum track reconstruction: significant statistics increase
- Improved calorimetry: searches for CPV in, e.g.,  $D^0 \rightarrow \phi \gamma$ ,  $D^0 \rightarrow \rho \gamma$
- Continued need for high statistics PID calibration samples
- Reco. asymmetries: continued reliance on absence of CPV in CF modes? Magnetic field reversal? Partial/full reconstruction methods may provide solutions.

Image: A math a math

# CPV in charm

### Searching for indirect CPV

**(**) Small  $x, y \Rightarrow$  simple modifications to  $D^0$  decay rate parameters:  $y_{CP}, A_{\Gamma}$ 

 $10^{-4}$  precision with well-controlled systematic uncertainties (arXiv:1702.06490)

$$egin{aligned} &\mathcal{A}_{\Gamma}(D^0 o K^-K^+) = (-3.0 \pm 3.2 \pm 1.4) imes 10^{-4}, \ &\mathcal{A}_{\Gamma}(D^0 o \pi^+\pi^-) = (4.6 \pm 5.8 \pm 1.6) imes 10^{-4} \end{aligned}$$

② TD analysis of 
$$D^0 o {\cal K}^0_{
m S} \pi^+ \pi^-$$

Determines  $x, y, |q/p|, \phi_D$  (JHEP 04 033)

Mixing analysis:  $x = (-8.6 \pm 5.3 \pm 1.7) \times 10^{-3}$ ,  $y = (0.3 \pm 4.6 \pm 1.3) \times 10^{-3}$ 

### In the Phase 2 era:

- Golden  $D^0 o K^0_{
  m S} \pi^+ \pi^-$  mode will be stats limited
- Any non-zero signal with current precision would indicate NP



### **Encore: Charm for Beauty**

Charm inputs for model-independent  $\gamma$  at LHCb

D. Johnson (CERN)

Phase 2 upgrade CPV at LHCb

29<sup>th</sup> May 2017 25 / 2

### Where will $\gamma$ become limited:

- Most<sup>1</sup>  $B \rightarrow DK$  modes rely on CLEO strong phase measurements at the  $\psi(3770)$
- Allows for model independence; crucial in the high-statistics era
- $\bullet\,$  Current systematic due to CLEO inputs  $\sim 2^\circ\,$
- Some *D* modes not analysed by CLEO; some would benefit from *D*-phasespace-binned analysis

### Available now:

- Quadruplication of the CLEO dataset at BES III ( ightarrow systematic  $\sim$  1 $^\circ$ )
  - Measurement in  $D \rightarrow K\pi$  (Int.J.Mod.Phys.Conf.Ser. 31 1460305)
  - Preliminary results in  $D \to K^0_{\rm S} \pi \pi$

<sup>1</sup>not, e.g., 
$$B^0_s 
ightarrow D^+_s K$$

D. Johnson (CERN)

### Alternative sources of charm information?

- Additional BES III run at  $\psi(3770)$  under consideration gives  $\sigma(\gamma) \sim 0.5^\circ$
- Exploit enormous LHCb charm samples? Require  $\sim 1$  LHCb-upgrade of charm to match already available BES III sample, though good prospects remain via mixing measurements
- Float the charm parameters in the  $\gamma$  combination?
  - Lose γ precision
  - Reduce ability to compare decay modes

### Best outcome:

• Full suite of charm inputs measured with current and future BES III datasets

### Beauty

- Great progress in probing SM, but considerable space for NP remains
- LHCb will drive tree-level CPV  $(\gamma)$  precision through Phase 2 to sub-degree precision
- Vital role of BESIII in providing charm inputs
- Precise measurements of CPV in *B*-mixing; penguin pollution under control

### Charm

- Direct and indirect CPV searches already probing SM territory
- No show-stoppers approaching Phase 2

Improvements in calorimetry and low-momentum track reconstruction will open up many little-explored modes