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Challenges in HL-LHC era in context of CMS

e Pileup: 140-200 interactions per event
e Radiation damage

o 150 Mrad of ionizing radiation at 9 krad/h
o Up to 1.5x10" hadrons/cm? with E>20 MeV

Solution: Sampling ECAL with target performance
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We considered two configurations for sampling calorimeter

e Shashlik: W/LYSO + Capillaries WLS (as “skewers”)

e Sampling W/CeF3 + Cerium doped quartz fibers along corners

| will discuss Shashlik option only



Choices for absorber, active layers, sizes

Aim at small effective Moliere radius to mitigate high occupancy from pileup

e Absorber layers = tungsten (R)=9.3 mm)
e Try not to inflate R,, too much with active layers — scintillator with high light output

Scintillator = LYSO(Ce)

e Hight brightness (30000 photons/MeV)
e Decay time ~40 ns
e Blue / Violet emission

Layers / Cells Dimensions

e Tungsten = 2.5 mm thick

e LYSO = 1.5 mm thick

o Effective Ry = 14 mm, X, = 4.8 mm

o Cell transverse dimensions 14x14 mm?

Sampling fluctuations: 10%/ VE



Notes for LHCb

Sampling term in resolution can be better than 10%

e LYSO layers can be narrower, up to 1 mm without significant cost
increase

» Need to optimize absorber layers (thickness and total number)

Position resolution is ~1 mm



Expected EM energy resolution

Simulations with Geant4 and optical
photon transport (SLitrani)
Without radiation damage

Comments

e Energy leakage can be fixed by
increasing number of layers

e Transverse non-uniformity assumes
“imperfect” corrections. Depends on
the angle.
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Radiation damage of LYSO

We model radiation damage by estimating index of induced absorption, u;,; as a function
of dose, dose rate, hadron fluence.

e Numerous irradiation tests with gammas and protons
¢ All giving consistent results
e u;.q 1s slowly increasing, no recovery at room temperature.

« lonizing damage depends on accumulated dose. Reaching maximum value <4 m~!
When? Depends on dose rate.

e Hadron damage depends on fluence, ® of hadrons with E>20 MeV.
Uing =2 X 10714 x @.

Path length of optical photons in LYSO is very short — minimize effect of radiation damage



LYSO-W during 12 years of HL-LHC
Degradation of ECAL response to 50 GeV EM shower
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LYSO-W during 3rd year of HL-LHC

Degradation of ECAL response to 50 GeV EM shower
n=3.0 4.7% per month

Very easy to monitor with physics
Laser monitoring also: leaky fiber at the center of the module exites LYSO scintillation
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Simulated degradation of EM energy resolution

due to radiation damage

In context of CMS after L=3000 fb~',
radiation environment vs |n|
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Non-Uniform Light Collection
Mitigation: Double-ended Readout
These studies were done for irradiated PbWQ, crystals of 22 cm long.

It is a good illustration of the principle
More details in CALOR2016 presentation by Marco Lucchini.
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Light Collection

Left: Undamaged crystal
Right: Proton irradiated crystal
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Longitudinal Shower Fluctuations

Left: Undamaged crystal
Right: Proton irradiated crystal
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Left: Undamaged crystal

Middle: Proton irradiated crystal. w;,,;=10 m~

1

Right: Proton irradiated crystal. u;,;=20 m~!
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Energy Resolution

Left: Undamaged crystal
Middle: Proton irradiated crystal. p,;=10 m~!
Right: Proton irradiated crystal. 1,,q=20 m~!
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Non-Uniform Light Collection
Mitigation: WLS Capillaries

Double-ended readout was not realistic in CMS
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Schematic of light collection, WLS and light transfer

WLS in capillary core
Thick wall, rad hard quartz

nCO}"E > nquartz

Core is blocked at the readout end

Detected photons to travel most of its trajectory in rad. hard quartz

T~




Schematic of “thick wall” capillary
Current form: OD:ID = 1mm:0.4mm

QA rad hard TiO, surface coats Fused Endsealing
Quartz (diffuse reflector)

Optically polished end N
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Ruby Quartz WLS Dye
Core Blocking Spherical Reservoir

Blown into the Capillary

Protective
Endcoating
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Diffusive Reflector Surface Coating

* Traditional end mirroring is not possible with a capillary of the

current structure with a reservoir at the upstream (non-readout)
end.

* Instead we have used TiO, painted on the external surface of the
capillary just downstream of the reservoir (typically a band of
4mm length) and also applying the TiO, paint to the reservoir
itself.

— Initial results indicate that the TiO, paint improves the light collection
from the upstream end of the capﬁlary as well as overall.

— The TiO, coating appears to be robust to 200Mrad of gamma irradiation
(highest dose level tested so far).
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Readout End

Rad Hard Quartz (Polymicro QA): OD:ID = 1mm:0.4mm

Core Blocking

150 mm

Thermal Expansion Reservoir

Diffusive Reflector (DR) Surface Coating
just before the Reservoir
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Initial studies has been conducted with WLS liquids

— Motivation is that liquids tend to be relatively radiation tolerant.

— Liquid solvents could be selected for various WLS dyes that would
otherwise be insoluble.

— Our preliminary choice of solvent has been a quenched EJ309-based
medium
* High flashpoint
» Safe handling

— Our WLS dyes must be tuned for the Scintillation Plates being used.
* LYSO(Ce) emits at ~425nm.
* Hence WLS must absorb ~ 425nm.
* Emission near ~ 500nm provides good spectral matching to solid state
photosensors.
* Examples J2 (similar/identical to Y11) and DSB1
» DSB1, spectrally similar to J2/Y11 but ~ 2.5x faster.
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LED measurements of capillary

lllumination of capillary through side wall at 425 nm

Measure light output of capillary as a function of distance from readout end
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LED measurements of an irradiated capillary
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Prototype for Test Beam in CERN
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4x4 Array of Shashlik modules. Module is 14x14x114 mm?

28 W plates 2.5mm thick
29 LYSO plates 1.5mm thick

Holes for WLS 1.6mm/1.7mm diameter in LYSO/W (overkill)
Holes for monitoring fiber 1.2mm
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WLS Option One: Y11 Kuraray 1.2 mm diameter
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WLS Option One: Double-ended readout

ND filters x32 and x8 to attenuate light

Clear fibers between Y11 and SiPMs I“D
|

Clear Fiber

S

ND Filter

.

SiPM
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WLS Option Two: Capillaries 1.0 mm : 0.4 mm for OD
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WLS Option Two: Single-ended readout

Clear fibers between capillaries and SiPMs
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@’;“ Energy reconstruction. Beam angle 5°® 2.4°

Left: Measured energy by the 4x4 array divided by the beam energy at 100 GeV electrons
Right: Energy resolution (CrystalBall o) as a function of beam energy

Rad-hard capillaries provide the same energy resolution as that of the much less radiation

hard Y11 fibers.

- L B B

S r

T, 1; —e— Capillaries readout 1
n I —=— Y11 readout

2

c

2 osl

o |

0.6
0.4

0.2

31

1140-06 [y

0.04}
0.03}
0.02}

0.01—

T stoch 01574 +0.01388 | |
noise 01+ 0 ||
const 0.009894 +0.002229

—e— Capillaries readout | |

—&— Y11 readout

—— Fit to Y11 readout

10

102
Epeam [GEV]



Summary

e Radiation hard Shashlik calorimeter that sustains performance up to
150 Mrad accumulated dose and 1.5x10'"> hadrons/cm? with
E>20 MeV

e Energy resolution below 2% without corrections has been reached
e Position resolution is ~1 mm

e R&D on capillaries, radiation hardness of crystals, test beam analysis
are in progress
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