LHCb RICH : Future upgrades

LHCb: Elba workshop

S.Easo 29-05-2017₁

Preamble

- Hadron PID at HL-LHC / Phase-II upgrade calls for major changes in the design of the RICH system
- Some of the ideas pursued
 - Improve the resolutions and yields from RICH : Natural evolution using latest technology
 - Use the "Hit Time" information as a new input : Introduce fast-timing detectors
 - Develop novel radiators which could overcome some of the basic limitations in the RICH system
- This presentation:
 - Current status and plans for R&D in the coming years
 - Resulting from various discussions with Carmelo and other colleagues in the RICH group
 - Using contributions from many colleagues in LHCb

Improve resolutions and yields

Green: Photonics HPD prototype

Improving resolutions, yields and occupancy

Use new photodetectors : QE augmented and shifted to larger λ	 Improve chromatic error and yield Potential candidates: SiPM and MCP
Improve optics geometry	 Improve emission point error and occupancy Use new light weight mirrors Address the space constraints around the RICH system , costs for detector plane area etc.
Improve pixel granularity	 Potential candidate: SiPM with 1 mm pixel size (cf. MaPMT ~2.85 mm)
Improve readout	➢ Binary readout → 'two bits' readout in high occupancy regions (apply two thresholds)

Photon detectors

Usage of SiPM (Silicon Photomultiplier) is being discussed as an option

- For now considering, 1 mm X 1 mm pixel size.
 Issues related to noise, especially due to such an area, to be addressed in the future.
- Using MCP is another option, but its QE compared to that of SiPM, may be an issue
- More information in the following presentations

RICH1 : A geometry option

• Assuming we keep the general structure of the current "two RICH" system

Sph.Mirror ROC=3800 mm tilt ~ 140 mrad Flat mirror in acceptance

Phase-1 Upgrade: Sph. Mirror ROC=3650 mm tilt ~ 258 mrad

- Uses of light weight flat mirrors, which are more expensive than glass mirrrors
- The proposed geometry may require changing the magnetic shielding structure to get enough space inside the shielding.
- With SiPM, the shielding requirements are less stringent than those of MaPMTS

Configurations for simulation study

Standard LHCb software simulation

Phase-I upgrade setup to study the effects of different options

Lur	ninosity cm- ² s ⁻¹	# buncl	hes	Beam Ene	rgy (TeV)	V	
2 X 1	.0 ³³	2400		7		7.6	
	Option		Description	ı			
(a)	Phase -1 Upgrade		Reference				
(b)	QE of SiPM QE		QE \rightarrow PDE of SiPM wrt. (a)				
(c)	RICH1 modification		New RICH1 geometry option wrt. (b)				
(d)	SiPM Pixel		Use a pixel size of 1 mm wrt. (c)				
(e)	Green photocathode		Use QE o	Jse QE of Photonics Green HPD wrt. (a)			

RICH options

Typical resolutions and yields

Resolutions, yields : RICH1

RICH1	Overall mrad	Chromatic mrad	Emis. Pt. mrad	Pixel mrad	Yield
Current	1.60	0.84	0.76	1.04	32
Phase-1 upgrade Reference	0.78	0.57	0.36	0.45	41.2
QE of SiPM	0.59	0.13	0.35	0.45	41.4
QE of SiPM + Geometry modif.	0.44	0.12	0.10	0.43	30
SiPM (QE+ pixel) + Geometry modif	0.22	0.12	0.10	0.15	35
QE of Green HPD	0.61	0.18	0.34	0.46	19.4

- Resolutions from particle gun events, for illustration
- A cut-off at 400 nm when using SiPM QE

Const. ~0.4 mrad New RICH related σ < Const

Resolutions, yields : RICH2

RICH2	Overall mrad	Chromatic mrad	Emis. Pt. mrad	Pixel mrad	Yield
Current	0.65	0.48	0.27	0.35	24
Phase-1 upgrade Reference	0.45	0.31	0.26	0.20	23
QE of SiPM	0.36	0.16	0.22	0.20	21
SiPM (QE+ pixel)	0.28	0.16	0.22	0.07	24
QE of Green HPD	0.37	0.18	0.24	0.20	10

- Resolutions from particle gun events, for illustration
- Quoting the values for small MaPMT (*R13742*), as an example here for the SiPM options
- A cut-off at 400 nm when using SiPM QE
- Plan to improve the geometry of RICH2 also so that New RICH2 σ < New RICH1 σ

RICH1 Occupancy

MaPMT + phase I upgrade geometry

XY Location of Rich1 Gas PMT hits on PMT Plane

Luminosity: phase -1 upgrade : peak occupancy ~ 28 %

At phase-II upgrade: assuming v=38 and linear scaling : peak occupancy ~ 140 %

RICH1 Occupancy

SiPM (Pixel + QE)+ new geometry

 Number of hits in SiPM X (100/ (25 x25))

Luminosity : phase -1 upgrade : peak SiPM occupancy ~ 3.1 %

XY Location of Rich1 Gas PMT hits on PMT Plane

At phase-II upgrade: assuming v=38 and linear scaling \therefore peak SiPM occupancy ~ 15.5 %

RICH with Time

- Potential uses of "Hit Time" Info:
 - Multiple interactions within 25 ns at 1X10³⁴ cm⁻²s⁻¹ : Prohibitively large occupancies in RICH1 Peak occupancy exceeding 100 % Separating these PV using the "Hit Time" info would be desirable
 - Adding the "HitTime" info to improve PID algorithm , for tracks above Cherenkov threshold
 - Reduce the background from 'out of time' Hits
- Recent progress:
 - Simulation of PV time : Floris Keizer, Chris Jones

RICH Hit Time : particle gun

Introducing the TIME of PV

- The primary vertex generator in the LHCb simulation is updated to model the bunches as 4D-Gaussians (x, y, z, <u>time</u>).
- The Probability Distribution Function is calculated when the bunches travel towards the collision point at the beam crossing angles.
- A Markov Chain sampler is used to sample from the 4D PDF.
- The generator called "BeamSpotMarkovChainSampleVertex" has been released as an option from Gaussv49r6 onwards.

Floris Keizer Chris Jones

PV : Time vs Z

• Tracks which created hits in RICH1 used for illustration

Track Origin : B-events

Track Origin: B-events

With simulation of PV time

RICH1 Hit Time

- RICH1 Hit Time in linear and log scales
- Using PV time simulation in B-events

• Small peaks from multiple reflections, photons taking a shortcut to detector plane etc. ¹⁹

RICH2 Hit Time

- RICH2 Hit Time in linear and log scales
- Using PV time simulation in B-events

• Small peaks from multiple reflections, photons taking a shortcut to detector plane, hits from different bunch-crossing etc.

RICH Hit Time

• The hit times for the different hits from the same track are correlated.

•

RICH1 hit time vs PV time

- RICH1 Hit Time correlated to the PV time
- Using the tracks whose Origin Z < 180 mm

RICH1 hit time vs PV Z

RICH hit time vs PV time

For RICH2, Tracks with momentum > 50 GeV/c used for illustration

- Using the slice -5.0 mm< Track Origin Z < 5 mm
- Correlation seen between RICH hit time and PV time within a PV Z slice

RICH hit time vs PV Z

Using the PV slice -0.1 ns < PV Time < 0.1 ns</p>

For RICH2, Tracks with momentum > 50 GeV/c used for illustration

Correlation seen between RICH hit time and PV Z within a PV time slice

Plans for using RICH Time

Floris Keizer Chris Jones et.al.

- Currently a 'global likelihood algorithm' is used to determine the likelihood of each track to be of each particle type.
- Option 1: Add the predicted RICH time coordinate in the 'expected photon' distribution
 - However this needs the 'track time', with the help of upgraded VELO for example.
 - If this proves to be difficult, we may re-visit the idea of storing these from full simulations.
- Option2: Improve the algorithm by using the 'relative' hit time. (Rings overlapping in spatial coordinates can be distinguished in time. This is useful in high occupancy regions)

Plans for using RICH Time

Proof-of-principle measurements with SiPM + CLARO in laboratory setup:

Cambridge, Edinburgh, Milano, CERN, RAL, Genova et.al.

Previous tests : C.Gotti et. al. JINST 8 C01029 (2013)

 A time resolution down to 1 ns can be achieved by FPGA based RICH upgrade digital boards. (Kintex 7 FPGA) This can help to reject hits outside a narrow window around the signal Stephen Wotton , Floris Keizer et.al.

- It is planned to use dedicated firmware with improved time resolution, at Cambridge. This is to allow the optimization of up to 8 channels on the digital boards to sample with a 150-200 ps time resolution
- Future upgrade will require redesign of the digital readout, with the implementation of an ASIC or FPGA with TDC.

Using novel radiators

- Starting from two media with ref. index n1 and n2, create a new effective ref index n3
- Design an effective ref. index from thin layers of materials.
 - This can overcome some of the basic limitations related to chromatic and emission point errors
 - Thin radiator would free up large amount of space taken up by the gas radiators.
- Using photonic crystals for this, is being investigated
 - RICH-2016 conference : September 2016

- Technology to produce them exists in the industry
 - It is already used in some smart phone displays

Using novel radiators

- R&D in progress at CERN:
 - Few samples obtained from industry
 - Work in progress towards testing them in the lab and in test beams
 - Results from these tests to help design custom made samples.

- Properties of an early prototype (1D crystal):
 - Single sheet thickness : 250 nm X 16 layers = 4 micron
 - Expected 'effective' Cherenkov angle ~ 65 degrees

SUMMARY

- R&D is in progress towards improving the performance of the RICH system
- Using SiPM as photodetector is one of the ideas under consideration
- Feasibility studies started towards geometry modifications
- Using RICH time information is a promising avenue. R&D to test this are being planned
- Work started in preparing the tests with prototypes of novel radiators

Ce n'est pas possible ; cela n'est pas français. _{Napoléon Bonaparte}

EXTRA SLIDES

RICH Hit Time : particle gun

- Intrinsic width of RICH hits in time in its central region of each RICH
- Tails due to the finite size of 'flat detector plane' considered (part of 'emission point error').

33

34

• Using the tracks whose Origin Z < 180 mm

RICH2 Hit time vs PV Z

• Using all PV

• Using the PV slice -0.1 ns < PV Time < 0.1 ns

RICH2 Hit time vs PV Time

• Using the slice -5.0 mm < Track Origin Z < 5 mm

RICH2 Hit Time: B-Events

• Using all tracks with OriginZ < 180 mm

- For the -0.5 mm< Track Origin Z < 0.5 mm
- The width dominated by intrinsic RICH2 time resolution

New version: product of Gaussian bunches

- 1. 4D PDF for primary vertex: product of two moving 3D Gaussians.
- 2. Sample from the 4D distribution using a Markov chain.

The 1D case looks like:

0.00

0

20

40

60

Momentum (GeV/c)

Transverse stretching = G=10 : Increase θ

> 100 40

80