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Types of tracks to be reconstructed

Long lived particles in LHCb

Upstream track
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Long tracks: ~ 10" K_/fb decay in LHCb acceptance
Downstream tracks: more statistics but worse p resolution

T tracks: very limited momentum resolution (if any)



The challenges ahead

Order-of-magnitude growth in data volume:
increased demand in offline storage and
computing (+ thermal) power

Most analysis will have to deal with the same
challenges faced by today’s upgrade’s charm
analyses

Finding tracks downstream of the magnet at
the earliest trigger level is not part of baseline
trigger scheme (significant CPU time required)

This would result in limited (if any) efficiency
for decays with downstream tracks that
cannot easily be triggered through other
signatures
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Motivation (1) - “core physics” channels
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Motivation (2) - K, and A

Using downstream tracks it could be possible to increase K| reconstruction

efficiency and achieve a some K.-K separation (by decay time)

Access very rare decays of K (see presentation by Jessica yesterday)

Precision study of the properties of strange baryons, e.g., using angular
distributions (BES-II: PRD 81, 012003; BES-IIl in preparation)
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Motivation (3) - displaced vertices

e Long lived particles with various J”: dark sector bosons, ALPs / higgs,
majorana neutrinos = increase the sensitivity at long lifetimes

e Converted photons?

e Lambda baryons decaying inside the magnet (for EDM / MDM measurements)
= allow the measurement, which relies entirely on the availability of T-tracks

Upper limit
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Without T- and downstream tracks, LHCb is only 50 cm long

Upstream track

T1 T2 T3
Ut l
VELO — Long track
|||M
VELO track Downstream track I =
pumm—_
= T track




Proposed approach

e We propose to build a downstream tracking unit that can be integrated in the
DAQ architecture and act as an “embedded track-detector”

e This would make event reconstruction primitives immediately available to
event-building and high-level-trigger farms (the trends of migrating event
reconstruction to early stages is already there)

e FPGA is the appropriate technology: aim for high bandwidth and low and fixed
latency comparable with that of other elements in detector DAQ (constraint set
by the event building)



A bhiologically inspired architecture

Rely on retina algorithm, whose architectural choices are targeted to the
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Distributed-embedded retina

e A single tracking board performs both
hit distribution and template matching

e Reads small detector portion, outputs
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Retina for tracking with silicon strips

The algorithm can be applied to any tracking problem in which it is possible to
define a distance between a hit (e.g., a pixel or a strip) and a template track
Early prototype trained for 2D straight lines in 6-layer silicon strip detector
O(2 MHz) track output per Stratix lll FPGA (65 nm)
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Latest prototype

INFN-CSN5 RETINA project

2 Stratix-V (28 nm)

(1.2 Tb/s bandwidth, 700 MHz clock)
On-board CPU, DDR memory,

96 inter-FPGA LVDS connections
96 high-speed SerDes I/0 (12 Gb/s)

Can be used as building block for an
entire tracker

Results on this prototype readily
extrapolate to real systems
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Prototype measured performances

Prototype achieved 20 MHz for occupancy compatible with Phase 1b upgrade
Hardware cost <0.1 euro/kHz of tracks (prototype)

Power cost: 0.2 mW/kHz of tracks

Short latency <0.5 us facilitates embedding in the DAQ system

Promising technology for our task: powerful and reasonably cheap
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Reconstruction of T tracks with retina

LHCb Phase-1b (2x10%3): intermediate
step towards LHCb Phase-2 (2x1034)

1819mm

™~ 200 reconstructable tracks in the IvT

SciFi: 10 Gtracks/s (equivalent to all E
CMS tracks above 2 GeV at 5x10%% g
o]

SciFi is split in 4 quadrants, with 50

T

wMonoLayer(0-3) hrllnnoLayer{a-?} IanmLayu 1B8-11

o I_I_II - II_I|

2417.5mm

tracks per quadrant

Assume 150 DAQ nodes associated
with SciFi and a tracking system
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2=7620mm

Fitting 550 cells per FPGA, we are left
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Retina output: accumulated weights

e Using only x-layers, a high number of ghosts is observed (and expected)

o Thisis a consequence of the detector layout, and not of the algorithm

e Reduced imposing suitable thresholds on the accumulated weights
o Weights depend on the number of hits associated with, and their distance to, each template
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Comparison with offline

e In this comparison, the exercise with the retina neglects noise, multiple
scattering, and (in the first configuration) the effect of the fringe magnetic field

e Nextimportant step is to add stereo layers - then we’ll add UT for downstream

Straight Effect of 2D Long 3D Long

2D lines magnet p>5 GeV p>5GeV

(retina) (retina) (offline) (offline)
Efficiency (%) | 95 90 88 82 94
Ghosts (%) 48 52 49 4 7

* Offline performance extracted from plot provided by Renato Quagliani (Bristol)
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e Real-time reconstruction capability by HEP experiments, especially in flavor
physics, will be key to success, and detector choices are central in achieving
fast tracking

e Application to track reconstruction with T stations is well motivated by the
ample physics program involving long(-ish) lived particles

e Building on previous experience designing similar objects we propose a
special-purpose processor (FPGA based) and moved the first steps towards
designing a suitable device

o G. Punzi et al., JINST 10 (2015) CO3008
o R. Cenci et al.,, NIM A 824, 260
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Retina algorithm

2) An analog voting scheme is executed in
1) Template_space Cells are routed Only tO parallel fOI‘ eaCh Cell 111 pI‘OCBSSng engines.
the relevant detector elements.
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Retina for tracking with pixel detector

Entries

The algorithm can be applied, relatively easily, to any tracking problem in
which it is possible to define a distance between a hit (e.g., a pixel or a strip)

and a template track

E.g., track finding in a pixel detector: with a system of 50000 cells (50 Stratix V

FPGA), one can achieve O(100) MHz retina tracks / FPGA at a reasonable cost
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Data for D — PP
from LHCb, CDF Belle, BABAR,

Observable Measurement
CLEO and FOCUS SCS branching ratios
Red: Post Moriond 2013 Update BD’ - K*K™)  (3.96+0.08) -107
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® (Generated track
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Figure: Weights accumulators in each cell for one event with 50 tracks.
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