

Phase II – Tracking: What is the light at the end of the LHC tunnel ?

A very short introduction

Slides by Chris Parkes

LHC Schedule & LHCb

Tracking Environment during phase II

- Instantaneous Luminosity L=2x10³⁴ cm⁻² s⁻¹
- Average number of visible interactions per bx μ =50
- Charged particles inside acceptance 1500-3500
- Challenges:
 - matching of upstream and downstream tracks.
 - SciFi has no y-segmentation. —
 - Fraction of ghosts in the SciFi rises rapidly _
 - Occupancy
 - Matching ghosts (rise linearly with #PV)

- Can we design a detector system to perform flavour physics in this environment?
 - We don't know yet.
 - Eol Identifies challenges and potential solutions

T-Station Ghosts. wrong SciFi Hits

#PV

Phase I(b) – Consolidate & Enhance

- LS3: 2½ year shutdown in the middle of LHCb Upgrade I operations
 - Utilise this to consolidate upgrade experiment
 - Phase I(b), same luminosity
 - Enhance physics programme
 - Pathways to Phase II

- Financial/ personnel resources limited

Same timescale:

Phase-II Detector

Tracking Evolution: Inner/Middle/Outer

	outer dimension	surface (12 layers)	installation
beamhole	$\varnothing 0.23 \text{ m}$		
IT	$1.2 imes 0.4~\mathrm{m}^2$	3.4 m^2	LS3
MT	$3.2 imes 0.8~{ m m}^2$	16.9 m^2	LS4
SciFi, OT	$6.3 imes5.0~\mathrm{m}^2$	380 m^2	LS2, LS4

- Large area tracker (360m²)
- Cover area at affordable cost
- High y granularity in inner
 Short Si strips (few cm)
 Medium y lengths in middle
 Longer Si strips (10 cm)
 No y granularity in outer
 - Scintillating Fibres

The SciFi tracker(s) in Run 3, 4, 5, ... phases Ia Ib II

C. Joram for the LHCb SciFi team

TTFU Elba 29-31 May 2017

SCI F

Design, challenges and status of the SciFi Tracker

80 μm resolution over a total active surface of ~ 340 m^2

12% X₀ total

~ 11'000 km of fibres

How to form signal clusters? How to suppress noise?

SiPM dark noise consists primarily of single pe signals. Beware of SiPM cross-talk, after-pulses, noise pile-up. They can make noise look like signal.

TTFU Elba, 29 - 31 June 2017

C. Joran | SciF 10

LHCL Run 3&4 (2021 – 2029, 50/fb)

The main challenges

- **Ionising dose** \rightarrow loss of fibre transparency \rightarrow loss of signal \rightarrow loss of efficiency
- **n-fluence** \rightarrow increasing dark count rate (DCR) in SiPM \rightarrow signal-like noise clusters \rightarrow ghosts

The (almost*) ultimate irradiation test

We irradiated two mirrored SciFi mats in the PS Irrad facility at CERN to the expected steep dose profile.

Only a **25 mm wide band** along the mat was irradiated.

The **expected signal loss** at the mirror end of the mat was 40%. **We found ~35%.**

* the ultimate test would be to irradiate at the correct (non-accelerated) dose rate, which would have taken 5 years. However, we have so far no strong indications that rate matters a lot. Tests ongoing!

Neutron fluence

- As in every Si device, neutrons damage the Si lattice. In a SiPM the main effect is the increase of the dark count rate DCR $\sim k \cdot F_n$
- Gain and PDE are practically unaffected, however DCR just goes through the roof. 50 fb⁻¹, 4·10¹¹ n/cm² → hundreds of MHz per SiPM channel (at RT)
- Problem: noise hits have same amplitude as 1 pe signal hits. They can combine/pile up to signal-like clusters.

Solutions:

- Cooling: Every 10 K reduction halves DCR.
 T ≠ -40°C gives a factor 64 (2⁶) reduction.
- Clustering. Noise hits don't form clusters, except accidentally!
- **Optimise SiPM** for low crosstalk and after pulses.
- Use preamp with short shaping time.

Neutron shielding.

TTFU Elba, 29 - 31 June 2017

Noise cluster rate (NCR) for different Pacific settings and thresh.

NCR shall be less than half of the smallest Signal CR

- SCR > 4 MHz/SiPM array
- NCR < 2 MHz/SiPM array

C. Joram

14

TTFU Elba, 29 - 31 June 2017

Upgrade during LS3 (2024/25)

- What do we gain (from a SciFi POV)?
 - ► Fresh non-damaged modules, possibly with better fibres (see below) → initially optimum hit efficiency
 - We would profit from a higher (y) IT → larger SciFi cut-out in order to reduce the damage of the fibres (see below)
- What do we loose?
 - Add non-uniformly distributed material, up to 30% X₀. One may consider to use SciFi modules as IT supports?

Øther issues?

Space (in z)

In reality it may more look like this ?

Upgrade during LS3 (2024/25)

- Envelope issues ...
 - 1 SciFi station = 4 (XUVX) modules

<u>A. Saputi</u> https://edms.cern.ch/document/1792415/1

SciFi uses the full OT envelope and penetrates 20 mm into the current IT envelope

Can we hope for better fibres? The NOL dream (saga)

What limits the light output of a scintillating fibre?

- $dE/dx \rightarrow god-given$
- Construction, i.e. double cladded. There seems to be no suitable plastic material with n<1.42
- Activation and wavelength conversion \rightarrow idea of NOL fibres

The NOL dream (saga)

S.A. "Ponomarenko et al., Nature Sci. Rep. 2014, 4, 6549

Nanostructured Organo-Silicon Luminophores

Chemically couple activator and wavelength shifting molecules to 1 complex.

Fast and efficient (non radiative) energy transfer \rightarrow higher light yield.

The NOL dream (saga)

- The fibre geometry poses some problems to NOLs:
 - For efficient transfer PS \rightarrow Act, [C_{Act}] should be ~1-2 %
 - As WLS have often a non-complete Stokes shift, they partly re-absorb their own light. → [WLS] < 1000 ppm, otherwise the attenuation length drops too much.</p>
 - NOLs have a [Act]/[WLS] ratio of 4/1 or 6/1 → Pure NOLs do not work in a fibre. We need to add some non-NOL Activator.
- What have we (Kuraray, CERN, Rus. Acad. Sci) achieved, after 8 iterations?

Oleg Borshchev et al., 2017 JINST 052P 0317 (just out)

Oleg Borshchev et al., 2017 JINST 052P 0317 (just out)

(c) SCSF-78

TTFU Elba, 29 - 31 June 2017

And another upgrade during LS4 (2030)

- Replace 6 inner SciFi modules by (10 40 cm) shorter modules → 72 new modules in total ~ 6000 km of fibres
- Replace <u>all</u> SiPMs.
- Add a Si Middle
 Tracker: 3.2 x 0.8 m²
- Total Si surface: O(20) m² (12 planes needed?)
- Can IT stay or does it need to be remade, too ?
 - Let's hope that enough space can be found under the bridge!
 - We need to find clever ways to share space and mechanics/ services

 Calculate light yield, by integrating the attenuation along the fibres. Assume same SiPM, electronics etc.

TTFU Elba, 29 - 31 June 2017

measurements

In agreement with lab and test beam

For D_{max} = 10 kGy (300 fb⁻¹) we get only ~5 pe. The light passes larger distances in heavily damaged fibre.

Insufficient for high efficiency!

Allows to shorten innermost fibres to 200 cm.

Opti-Hypo SciFi (LS4), 300 /fb

Adding 6 Si panels

Fibres may just survive 300 /fb! Performance comparable to current SciFi.

Where may we still gain some margin?

- More fibre layers, e.g. 8 instead of 6 per mat \rightarrow money
- Better fibres (in ~8 years from now)
- Better SiPMs → higher PDE ?

Expected radiation damage to SiPMs

• What are the knobs we can turn?

T_{SiPM} Every 10K halves DCR

Is it realistic to operate SiPMs at -50 or -60°C ? It is at least very challenging! Issues: Insulation of cold box. Significantly more complex (and expensive) chiller. Cascaded chillers?

n-Shielding

30 cm of PE (as foreseen for the current SciFi) should reduce F_n by ~3. There is hardly any space for local shielding of the SiPMs.

Optimisation of SiPMs

Even lower cross talk, optimisation of SiPM design (E-field geometry)

FE-Electronics

Perhaps (!) one could still gain a bit by further shortening the time constant of the shaper. It's already very fast (5 ns FWHM).

→ It's not completely hopeless to gain a factor 2-4 in the DCR, but it requires VERY substantial efforts. Essentially we build a new detector! New SiPMs, new cold boxes, new cooling system, new FE-ASICs. We are talking about a O(10) million investment.

Alternatives to a SciFi tracker?

- Silicon micro strips over the full surface (300 m²) are not affordable and would probably be an overkill.
- Micro Pattern Gas Detectors (GEM, Micromegas, ...) as alternatives?

Let's have a brief look at the CMS Muon Endcap upgrade

CMS-TDR-013

Ar/CO₂ (70/30), gas gain up to ~10000

Alternatives to a SciFi tracker?

CMS-TDR-013

- Readout board can be freely segmented (2D).
- Detectors have an inactive edge region →
 Need to foresee overlap
- Some thick and heavy frames are unavoidable.
- The material distribution of the major part of the chamber is <u>relatively</u> light and uniform: (7 mm PCB ~ 5% X₀).
- → 6(12) layers = $30(60)\% X_0$

Hit efficiency up to 98%. 100% hard to achieve with a 3 mm drift gas gap. Depending on RO geometry and electronics, values << 100 µm are achievable

97% of hits fall in correct 25 ns bin

Guirl, L. et al. (2002) Nucl. Instr. and Meth. A 478, 263.

- The phase Ib upgrade (LS3) looks relatively minor to the SciFi, however entails quite some cost - O(1M) - and effort (1 year).
- The manpower situation would allow to produce the 24 special modules only after the installation of the current SciFi (2021/22).
- It would be nice if a new IT could extend a bit further than just ±20 cm in y to mitigate radiation damage of the fibre ends.
- The phase II upgrade (LS4) is a real challenge for the SciFi technology. The dose at y ~ 30 cm is too high for the fibres. We can probably survive 300/fb at 40,50 cm from the beam.
 - The neutron fluence will **torture the SiPMs to/beyond their limits**. The operation in terms of DCR, NCR, SCR needs further studies. Going colder than -40C is difficult.
 - Micro Pattern Gas Detectors have lots of attractive features and further matured over the last 10 years. However their higher material budget and non-uniform distribution may be a too high price to pay.

BACK-UP SLIDES

TTFU Elba, 29 - 31 June 2017

Tracking

- Challenges:
 - Track Segment Matching
 - Matching of upstream & downstream
 - Occupancy
 - Finer segmentation
- Opportunities:

- Low momentum tracking

Matching Ghosts: wrong matching to VELO

See Thomas Nikodem presentation at October TTFU

Matching Ghosts: wrong matching to VELO Particle 1 VELO SciFi Cannot be killed by SciFi, because SciFi isn't doing anything wrong!

~7m

- UT provides space-points for matching VELO and downstream tracking
- Do we need additional stations in magnet region for Phase II ?

- Occupancies & radiation levels achievable in silicon
- Designs and technologies as for IT

IT/MT/OT

- LS3 Phase Ib
 - Install IT
 - Modify Sci-Fi two modules per layer for LS3
- LS4 Phase II
 - Install MT
 - New SciFi for LS4

- Radiation tolerance of fibres and SiPMs?
- Cooling (-50C), additional shielding, technology improvements

Matching: Timing Planes in Tracking

- Distance from VELO to main Tracker is ~ 7m
 Intermediate station before magnet
- VELO will add timing
- Is timing needed in tracker region also to obtain correct matching of track stubs in Phase II?
 - TORCH would be a candidate technology

Phase 1(b)+II – Magnet Side Stations

- Improve tracking acceptance for low momentum particles
 - Install tracking stations on

the dipole magnet internal sides Many physics gains

e.g. $D^{*+} \rightarrow D \pi_s^+$, 40% extra slow pions

 Candidate technology is SciFi / scint. bars +SiPMs outside acceptance

Detector System Summary

Detector	LS3	Phase-II
VELO	Deployment of prototype modules	New detector with fast timing
Tracking	Insert Silicon IT, modify SciFi; install MS	Silicon UT and IT, SciFi OT
RICH	New photodetectors for selected regions; use of timing information	New optics; full replacement of photodetectors
TORCH	Installation	Higher granularity photodetectors
CALO	Tungsten sampling modules installed in inner region	New modules in middle and outer regions
Muon	Replace HCAL with iron shielding; installation of high-rate chambers	Complete chamber installation
Trigger and data processing	Adiabatic software improvements; review of offline processing; installation of downstream track-finding processor	Expansion/replacement of links, readout boards and servers and servers

• We will not be able to afford all items in LS3 column for LS3

• Prioritisation required but not in Eol

Tracking: Final Points

- Eol challenges and plausible solutions for Phase-II
 - Exploit LS3 IT & magnet side stations
- **4D**: Timing likely to play a key role
- Downstream tracking mixed technology solution (Si +SciFi)
- Potential to **improve** capabilities (low momentum tracking
- In all areas R&D projects are identified in "Next Steps" section of Eol
- First cost estimates of systems given in October TTFU – not in Eol
- We need a comprehensive optimisation of the tracking system for Phase-II
 - Particularly to understand the matching issues

