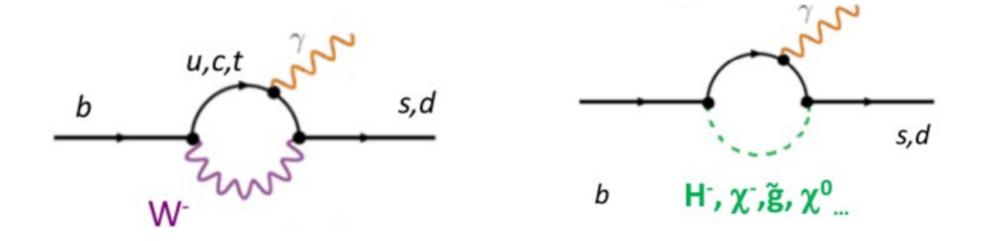
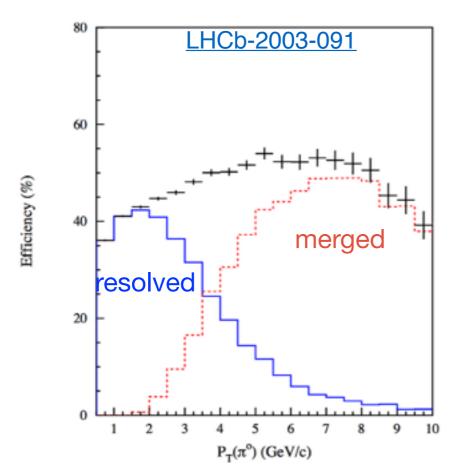
Perspectives with radiative penguins at LHCb

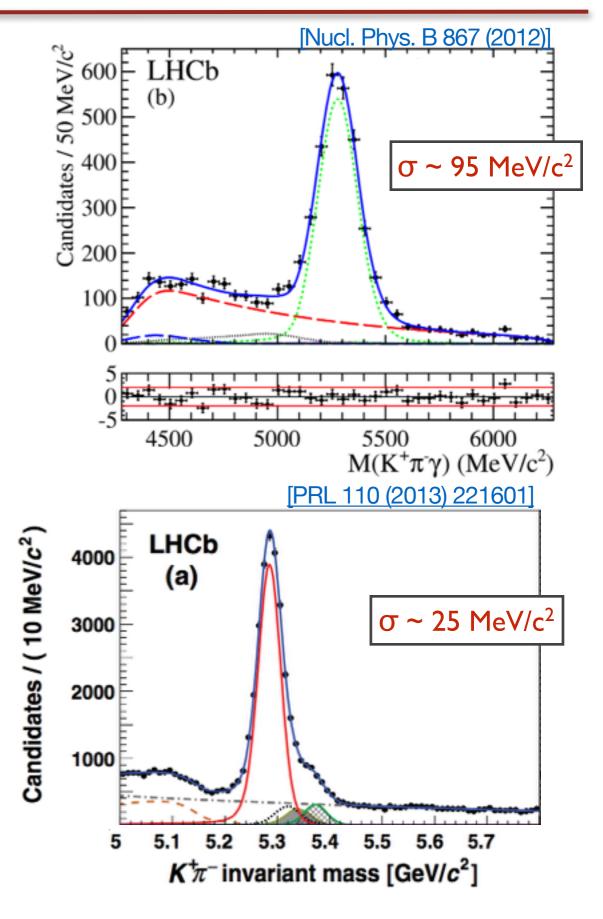

Preema Pais on behalf of the LHCb Collaboration

Beyond the LHCb Phase-1 Upgrade workshop May 28-31, 2017

MOTIVATION

• b→s/dγ transitions are flavour-changing neutral current (FCNC) transitions, forbidden at tree level in the Standard Model


- New physics (NP) effects can show up in these electroweak penguin loops
- Measurements of various observable quantities branching ratios, CP and isospin asymmetries, photon polarisation- could provide hints of physics beyond the SM


RADIATIVE DECAYS AT LHCb

- Branching fraction measurements
- Direct CP asymmetries
- + Isospin asymmetry in $B \rightarrow K^* \gamma$ decays
- Measurements of the photon polarization:
 - Time-dependent analysis of $B \rightarrow f_{cp} \gamma$ decays
 - Angular analysis of radiative decays with three charged final state particles
 - Angular distributions of radiative b-baryon decays
 - Transverse asymmetry in $B^0 \rightarrow K^*e^+e^-$ decays

EXPERIMENTAL CHALLENGES

- Mass resolution dominated by photon reconstruction
 - $\sigma \sim 95 \text{ MeV/c}^2$ for $B \rightarrow K^* \gamma$ decays, compared to ~25 MeV/c² for $B \rightarrow K\pi$ decays.
- + Backgrounds:
 - Above transverse energies of 4 GeV, $\pi^0 \rightarrow \gamma \gamma$ reconstructed as a single cluster in the calorimeter
 - Combinatorial: O(10) reconstructed photons per event

Experimental Challenges - II

Without analysis improvements, many analyses would be systematics-limited by Run 5

Primary known/expected sources of systematic uncertainty:

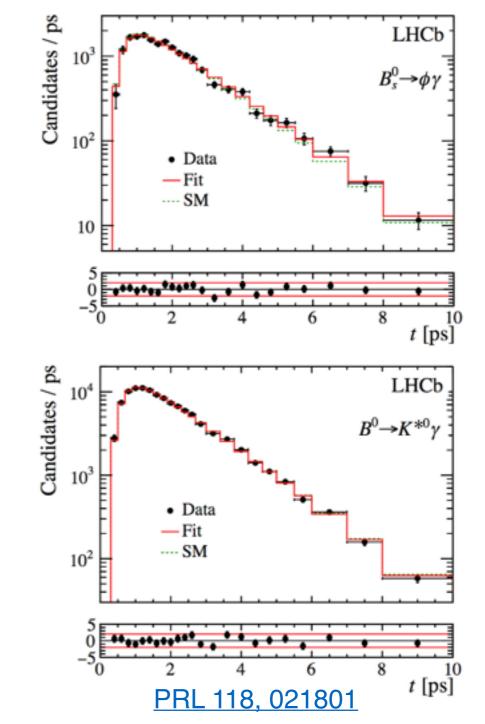
- + Partially reconstructed background, due to large invariant mass resolution
 - Correlation between decay time and reconstructed mass in $B_s \! \rightarrow \! \varphi \gamma$ decays
 - Uncertainty in background modeling in $A_{\mbox{\tiny cp}}$ and branching fraction measurements
 - Effects on angular distributions in $K\pi\pi\gamma$ decays
- Detector effects
 - Decay time resolution for C,S measurements in tagged $B_s \rightarrow \Phi Y$ analysis
 - Detection asymmetry in A_{cp} measurement
- Modeling of acceptances
 - Main source of uncertainty for $\Lambda_b \rightarrow \Lambda^0 \gamma$ angular analysis

RADIATIVE DECAYS AT LHCb - RUN 5

- Increased calorimeter resolution would improve invariant mass resolution for radiative decays
 - Since many analyses will not be statistically limited, important to reduce systematic uncertainties from background effects
 - Improved π^0 reconstruction would also allow for the study of modes with neutral pions
- Fast-timing calorimeter information
 - Would lead to significant reduction in background rate from pile-up in HL-LHC environment
- Analyses will also benefit from improvements to trigger and downstream track reconstruction
 - L0 trigger is currently the main limiting factor ($E_T(\gamma) > 3 \text{ GeV}$)
 - Must reduce timing in order to run reconstruction at lower energies
- 300 fb⁻¹ of data expected by the end of Run 5
 - Some analyses (radiative b-baryons, analyses with converted photons) will still be statistically limited after Run 2

Access photon polarization via time-dependent decay rate of $B_s \rightarrow \varphi \gamma$ decays

 $B_s \rightarrow \phi \gamma$

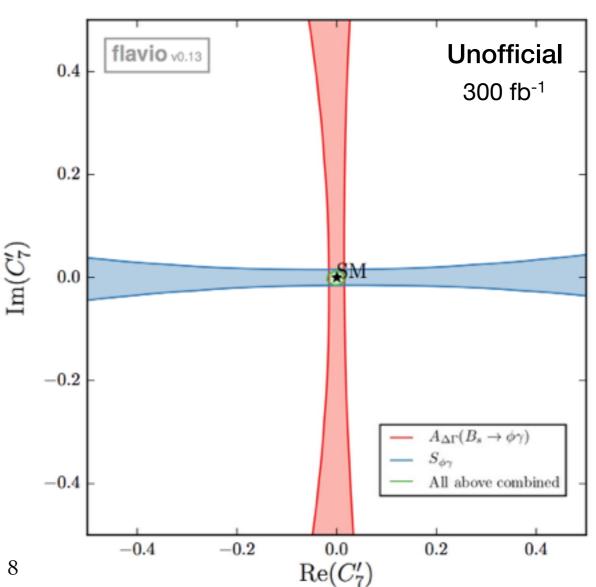

$$\Gamma(B_{(s)}^{0} \to f^{CP}\gamma) \sim e^{-\Gamma_{(s)}t} \Big\{ \cosh \frac{\Delta\Gamma_{(s)}t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta\Gamma_{(s)}t}{2} \pm \mathcal{C} \cos \Delta m_{(s)}t \mp \mathcal{S} \sin \Delta m_{(s)}t \Big\}.$$

Run 1 - untagged analysis:

- Access to photon polarisation through A^{Δ}
- Simultaneous fit of $B_s \rightarrow \varphi \gamma$ and $B^0 \rightarrow K^* \gamma$ decay time distributions
- Dominant systematic uncertainty from background subtraction (mass - decay time correlations)

$$\mathcal{A}^{\Delta} = -0.98^{\,+\,0.46}_{\,-\,0.52}{}^{\,+\,0.23}_{\,-\,0.20}$$

Compatible with SM within 2σ

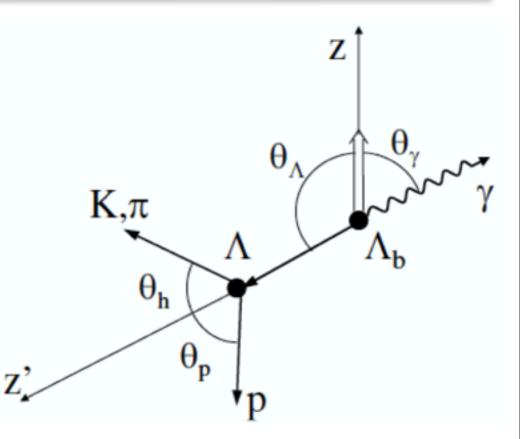

Tagged analysis ongoing for Run 2:

$$\Gamma(B^0_{(s)} \to f^{CP}\gamma) \sim e^{-\Gamma_{(s)}t} \Big\{ \cosh \frac{\Delta\Gamma_{(s)}t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta\Gamma_{(s)}t}{2} \pm \mathcal{C} \cos \Delta m_{(s)}t \mp \mathcal{S} \sin \Delta m_{(s)}t \Big\}.$$

- CP parameter C and mixing parameter S can also be extracted
- A^{Δ} and S are sensitive to the photon polarisation
- With a flavour-tagging efficiency of ~ 5%, the combined σ(A^Δ), σ(S) is expected to be ~0.3 (including systematic uncertainties)

With 300 fb⁻¹, expect O(80,000) $B_s \rightarrow \varphi \gamma$ events

- $\sigma(A^{\Delta}) \sim 0.02$ (statistical only)
- Need to work on reducing systematics from lifetime acceptance
- Uncertainties on C,S dominated by proper time resolution (80fs in Run 1)


RADIATIVE **b-**BARYON DECAYS

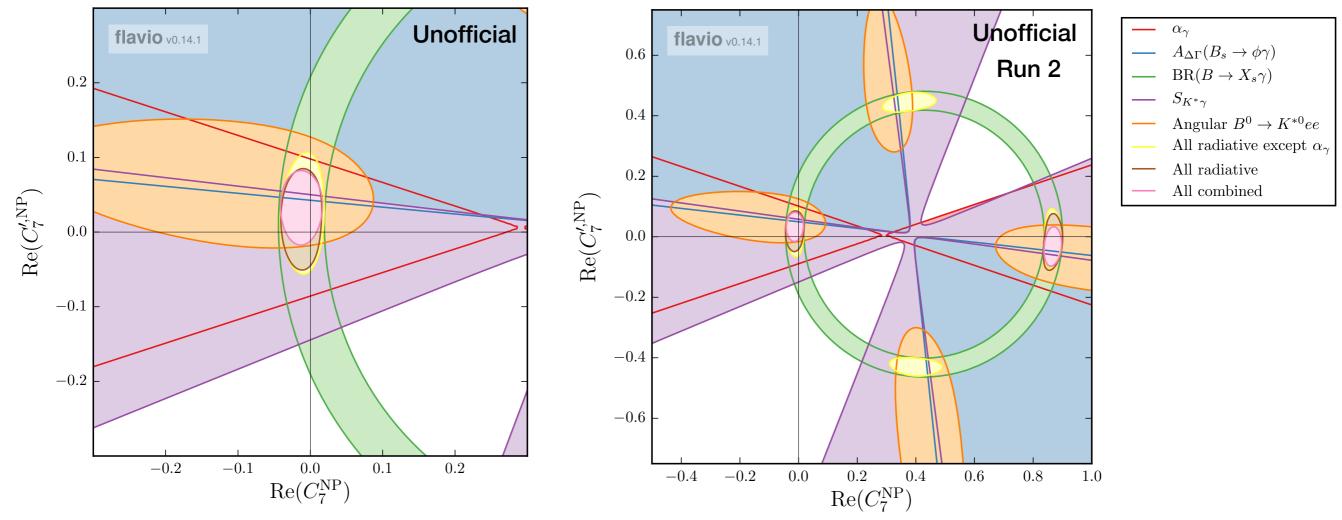
Angular distributions of radiative b-baryon decays expected to be sensitive to the photon polarisation parameter:

$$\alpha_{\gamma} = \frac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)}$$

At LO in the SM:

$$\alpha_{\gamma}^{LO} = \frac{1 - |r|^2}{1 + |r|^2} \qquad r = \frac{C'_{7}}{C_{7}} \sim \frac{m_s}{m_b}$$

$$egin{aligned} rac{d\Gamma}{d\cos heta_{\gamma}} &\propto 1 - lpha_{\gamma}P_{\Lambda_b}\cos heta_{\gamma} \ \ rac{d\Gamma}{d\cos heta_p} &\propto 1 - lpha_{\gamma}lpha_{p,1/2}\cos heta_p \end{aligned}$$


Study of $\Lambda_b \rightarrow \Lambda^0 \gamma$ decays:

- Challenges: No Λ_b vertex, long-lived Λ^0
- Simultaneous fit of $cos\theta_p$ and $cos\theta_\gamma$
- Gaussian constrain $\alpha_{p,1/2}$ =(0.642±0.013) and P_{Ab}=(0.06±0.07)

RADIATIVE **b-**BARYON DECAYS

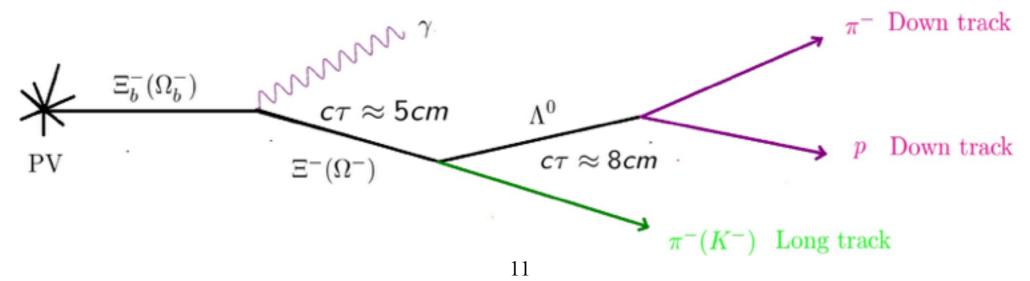
Analysis ongoing with Run 2 (2015+2016) data:

- Dedicated HLT2 line developed for Run 2; uses long tracks only
- 770 signal events expected with 2 fb⁻¹ (assuming a BR of 4.5 x 10⁻⁵); expected sensitivity $\sigma(\alpha_{\gamma}) \sim 0.9$

With 300fb⁻¹, should obtain O(10,000) signal events

- Uncertainty on α_{γ} (stat.) ~ 0.01
- Dominant uncertainty would be modeling of acceptance
- Yield could be improved with upgrade trigger + downstream track reconstruction

RADIATIVE b-BARYON DECAYS

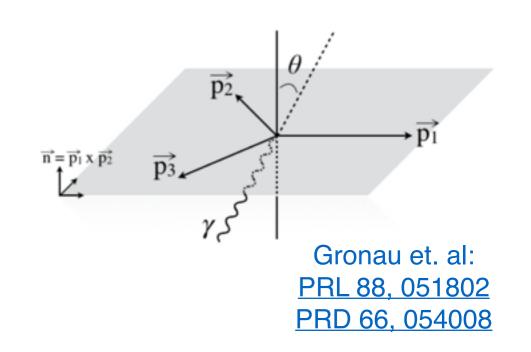

- Can also study $\Xi_{b}^{-} \rightarrow \Xi^{-}\gamma$ and $\Omega_{b}^{-} \rightarrow \Omega^{-}\gamma$ decays
- Rich angular distribution:

$$\Gamma_{\Xi_{b}}(\theta_{\Lambda},\theta_{p}) = \frac{1}{4} \left(1 - \alpha_{\gamma} \alpha_{\Xi} \cos \theta_{\Lambda} + \alpha_{\Lambda} \cos \theta_{p} \left(\alpha_{\Xi} - \alpha_{\gamma} \cos \theta_{\Lambda} \right) \right)$$

- Reconstruction aided by presence of additional charged tracks (Ξ^{-}, π^{-})
- Limitations: Low reconstruction efficiency, smaller decay parameter (with respect to Λ_{b} decays)

Run 2 (and beyond):

- Dedicated HLT2 line (from 2016)
- ~100 events expected in Run 2 (trigger+stripping)
- Will benefit from increase in statistics for Run 5, improvements in trigger and reconstruction
- Expected sensitivity similar to $\Lambda_b \rightarrow \Lambda^0 \gamma$ mode



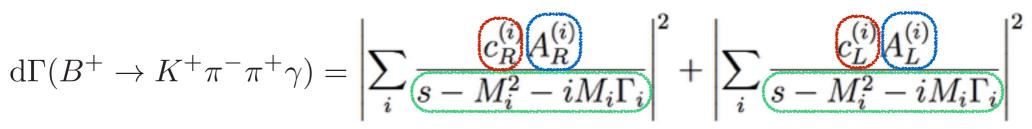
Photon Polarisation in $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ Decays


Can measure the photon polarisation using the recoil hadron distribution:

- Photon helicity is odd under parity
- Need three tracks in the final state; can form a parityodd triple product from final-state particle momenta

$$\vec{p_{\gamma}} \cdot (\vec{p_1} \times \vec{p_2})$$

Define up-down asymmetry, proportional to the photon polarization parameter λ_{γ}


PHOTON POLARISATION IN $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ Decays

Full five-dimensional amplitude analysis needed:

- Access to λ_{γ} through interferences between decay modes
- Use three invariant masses (m²(Kππ), m²(Kπ) and m²(ππ)), and two angular variables of the photon (χ and θ) to describe the Kππγ system

Sensitivity study ongoing for Runs1+2

- ~14,000 signal B candidates in Run 1
- O(300,000) events expected with 300 fb⁻¹
- Expected dominant systematic uncertainty effect of partially reconstructed background on angular distributions

Events / (0.03 GeV ²/c⁴) 1 00

10

10⁻²

10⁻³

 $d\Gamma(B^+ \to K_{\rm res}^{+(i)}\gamma \to K^+\pi^-\pi^+\gamma) \propto \left(|\mathcal{M}_{\rm R}|^2 + |\mathcal{M}_{\rm L}|^2\right) + \lambda_{\gamma}(|\mathcal{M}_{\rm R}|^2 - |\mathcal{M}_{\rm L}|^2)$

CERN-THESIS-2015-287

m²(Kππ) [GeV²/c⁴

2.5

3.5

PROSPECTS FOR $B \rightarrow K\pi\pi\gamma$ DECAYS

- Neutral Kππ modes (B⁰→K_sπ⁻π⁺γ , B⁰→K⁺π⁻π⁰γ) are expected to have larger up-down asymmetry due to additional interferences between isospin-related amplitudes (Gronau, <u>PRD 66, 054008</u>)
- Photon polarization depends on B^0 flavour \Rightarrow require flavour-tagging
- With a FT efficiency of 5%, could expect O(10,000) events with 300fb⁻¹
- Other decay modes?
 - $B^+ \rightarrow K_s \pi^+ \pi^0 \gamma$? Very difficult due to Ks and π^0 reconstruction

Branching Fractions and $A_{\mbox{CP}}$

• Ratio of $B^0 \rightarrow K^* \gamma$ and $B^0 \rightarrow \varphi \gamma$ branching fractions with 1fb⁻¹

 $1.23 \pm 0.06 \text{ (stat.)} \pm 0.04 \text{ (syst.)} \pm 0.10 \text{ (f}_{\text{S}}/\text{f}_{\text{d}})$

- Update with full Run 1 dataset soon!
 - Includes $\Lambda_b \rightarrow \Lambda(\rightarrow pK)\gamma$ decay
- Limited by hadronic form factors; also nearing systematics-dominated regime
- Run2: Study higher hadronic resonance states of $B \rightarrow (Kh)\gamma$
 - A_{cp} in $B^0 \rightarrow K^* \gamma$ decays also measured with 1fb⁻¹
 - Main systematic due to A_{cp} from background (will be improved with inclusion of Λ_b→pKγ decay mode in the fit model)
 - Could be systematics-dominated by the end of Run 2
 - A_{cp} in b→dγ transitions is expected to be larger (around 10%, compared to 1% for b→sγ)

Nucl. Phys. B867

	$B^0\!\to K^{*0}\gamma~(\times 10^{-5})$	$B^0_s \! \to \phi \gamma ~(\times 10^{-5})$
Theory	4.3 ± 1.4	4.3 ± 1.4
CLEO	$4.55^{+0.72}_{-0.68} \pm 0.34$	-
BaBar	$4.47 \pm 0.10 \pm 0.16$	-
Belle	$4.01 \pm 0.21 \pm 0.17$	$5.7^{+1.8+1.2}_{-1.5-1.1}$
LHCb	-	3.5 ± 0.4

	$\mathcal{A}^{C\!P}~(B^0\!\to K^{*0}\gamma)$
Theory	$-(0.61\pm 0.46)\%$
CLEO	$(8 \pm 13 \pm 3)\%$
BaBar	$(-1.6 \pm 2.2 \pm 0.7)\%$
Belle	$(-1.5 \pm 4.4 \pm 1.2)\%$
LHCb	$(0.8\pm1.7\pm0.9)\%$

$b \rightarrow d\gamma$ TRANSITIONS

- Allows access to $|V_{td}/V_{ts}|$ via a measurement of BR(B⁰ $\rightarrow \rho^{0}\gamma$)/BR(B⁰ $\rightarrow K^{*}\gamma$)
- A_{cp} expected to be larger than for $b \rightarrow s\gamma$ transitions
- Highly suppressed, so large statistics are needed
- Need to control background from decay modes with neutral pions
- Currently studying $B^0 \rightarrow \rho^0 \gamma$ decays with Run 1 data
 - A few hundred signal events expected

Looking ahead:

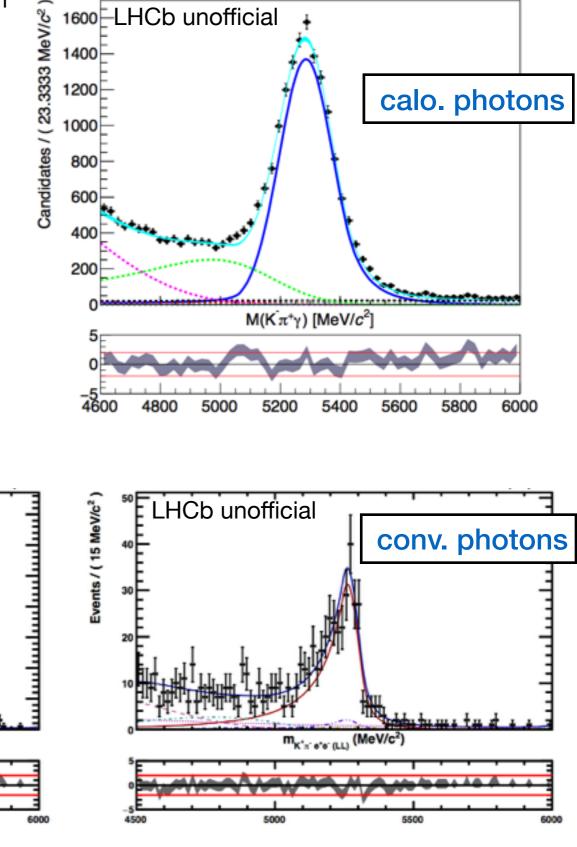
- Could add in study of $B \rightarrow \omega (\rightarrow \pi^+ \pi^- \pi^0) \gamma$ decays
- Challenging! Currently expect ~5% reconstruction efficiency compared to $\rho\gamma$ mode
- Will benefit from increased statistics, and partial reconstruction of the $\boldsymbol{\omega}$ decay vertex
- More decay modes: $B \rightarrow \pi \pi \pi \gamma$, $B \rightarrow p p \pi \gamma$, ...

ISOSPIN ASYMMETRY IN $B \rightarrow K^* \gamma$

+ Isospin asymmetry in $B \rightarrow K^* \gamma$ decays has a small theoretical uncertainty, interesting to measure: $\Gamma(\bar{B}^0 \rightarrow \bar{K}^{*0} \gamma) - \Gamma(B^- \rightarrow K^{*-} \gamma)$

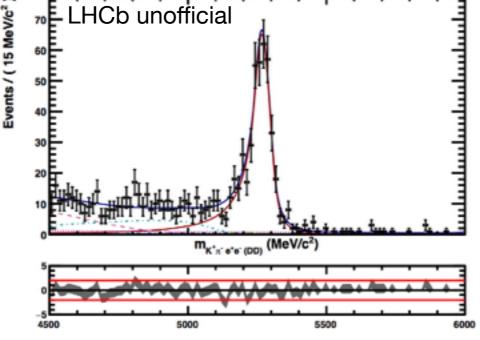
$$\Delta_{0-} = \frac{\Gamma(B^0 \to K^{*0} \gamma) - \Gamma(B^- \to K^{*-} \gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \gamma) + \Gamma(B^- \to K^{*-} \gamma)}$$

◆ Current best measurement by the BABAR collaboration [PRL 103, 211802]:


$0.017 < \Delta_{0^-} < 0.116$ at 90% C.L

Can LHCb have a competitive measurement?

- Need to reach a statistical uncertainty of ~3%
- Limitations: Low efficiency for $B^+ \rightarrow K^{*+}(\rightarrow K_s \pi^+)\gamma$ decays (due to low K_s reconstruction efficiency)
- Initial studies with Run1 + 2015 data show that we need ~ 3 times the statistics


CONVERTED PHOTONS

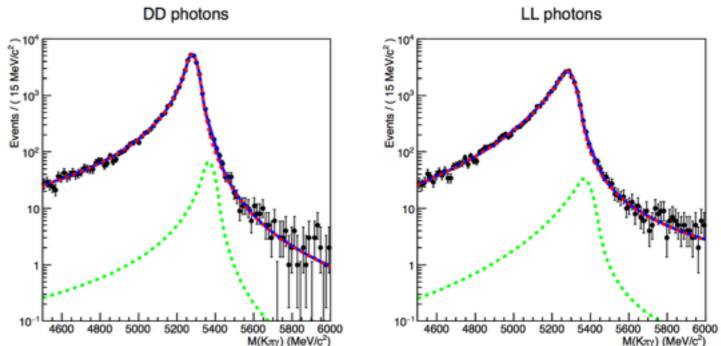
- B invariant mass resolution is improved with photon conversions
- However, have to contend with lower statistics (10-20% compared to yield obtained with calo. photon analyses)
- Run 1 branching fraction and Acp measurements done
 - Limited compared to calo photon analysis
- + Included $B_s \rightarrow K^*\gamma$ contribution, set a limit on $B_s \rightarrow K^* \gamma$ decay branching fraction

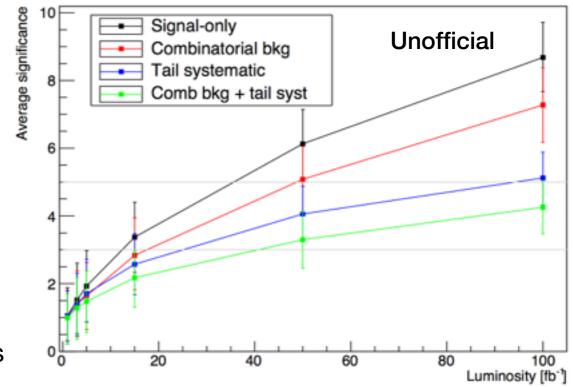
1600 LHCb unofficial

1400

18

CONVERTED PHOTONS

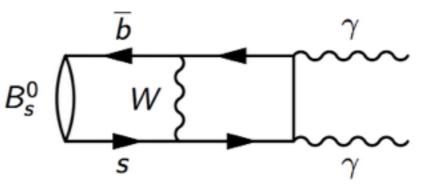

Finding the $B_s \rightarrow K^*\gamma$ needle in a $B^0 \rightarrow K^*\gamma$ haystack:


- Decay mode is highly suppressed
- Δm(Bs,B) is around the typical invariant mass resolution
- Better resolution of B⁰ mass peak with converted photons, so is interesting to search here

Sensitivity study:

- Use shapes from Run 1 analysis to model $B_s \rightarrow K^* \gamma$ (signal) and $B^0 \rightarrow K^* \gamma$ (background)
- Fit with simultaneous PDF, calculate log(L) between S+B and B only hypotheses
- Obtain signficances using Wilks' theorem
- Can also include combinatorial background, and a systematic from incorrect knowledge of the right B⁰→K*γ tail

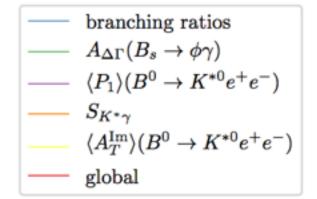
High statistics + reduction in background (and systematics effects) needed for observation

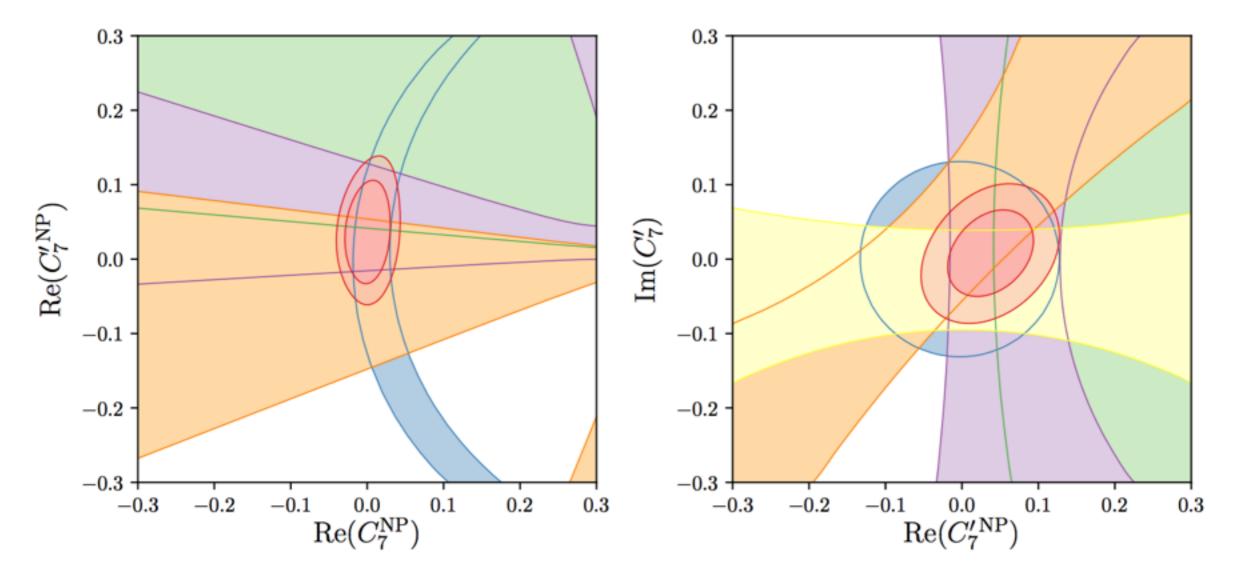


CAN WE DO MORE?

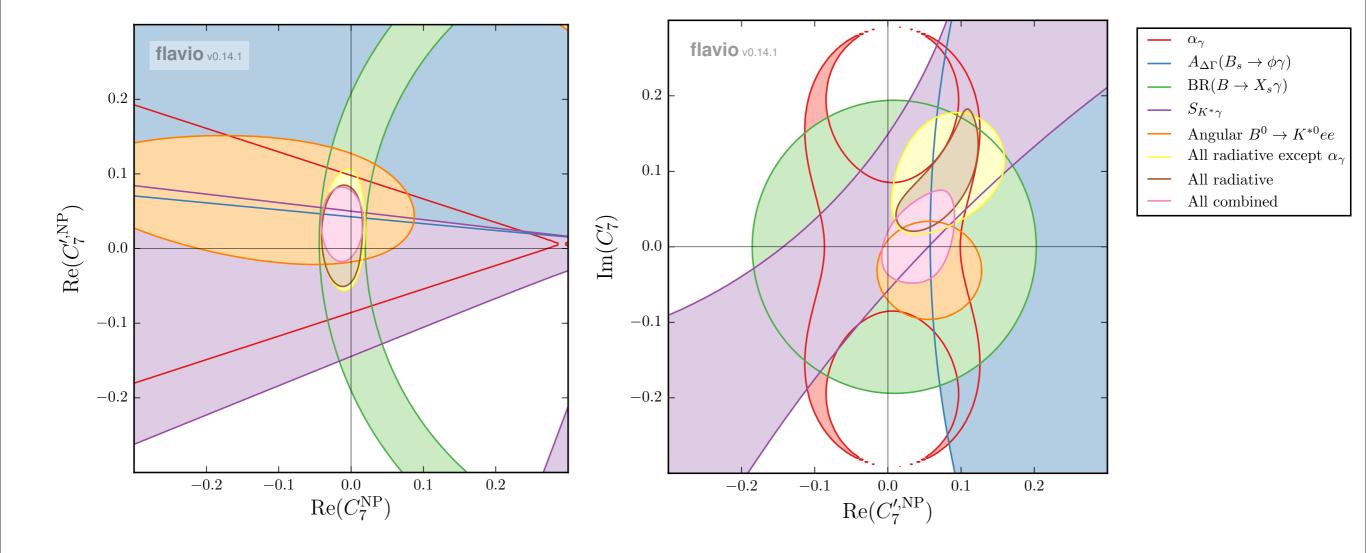
$B \rightarrow \gamma \gamma$ decays

- Expected to be very sensitive to New Physics (from SUSY, extended Higgs models, etc.)
- Challenging analysis for LHCb
- Three detector final states:
 - Two calo photons (very difficult to construct, but largest yield)
 - One calo photon, one conversion (cleaner detector signal, but lower statistics)
 - Two conversions (can reconstruct B vertex, very low statistics)
- Would greatly benefit from high statistics dataset and improved calorimeter

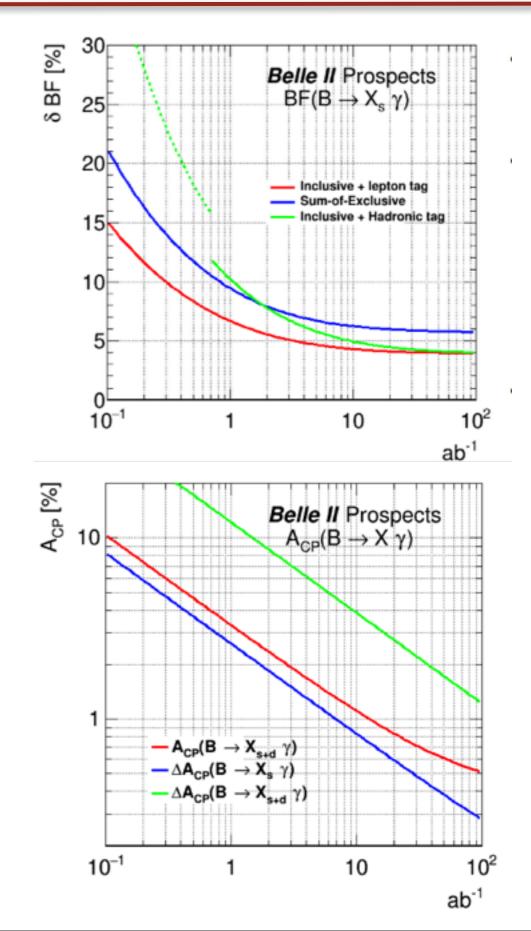



SUMMARY

- Studying new radiative decay modes, performing more complex analyses with Run 2 data
 - + However, many analyses will be systematics-limited by the start of Run 5
- Calorimeter upgrade will be important for reduction of systematic uncertainties
 - Improved resolution will decrease the (currently dominant) effect of partially reconstructed background
 - + Addition of time-of-flight information will help reduce backgrounds further
- The 300fb⁻¹ dataset will enable the study of highly suppressed decay modes
- Will be able to test Standard Model hypotheses in multiple channels


BACKUP

CONSTRAINTS ON C7/C7' - CURRENT PICTURE



Constraints on C7/C7' - Λ_b Decays

BELLE II PROSPECTS

- Summarized from this talk at CKM 2016
- + Inclusive $B \rightarrow X_q \gamma$ branching fraction
 - With 50ab⁻¹, an uncertainty of 3.9% is foreseen for E_γ> 1.6 GeV
 - Comparable to theoretical uncertainties from nonperturbative effects
- A_{cp} , $\Delta(A_{cp})$:
 - B→X_sY A_{cp} expected to have an uncertainty of 0.61% (i.e. 3.4σ if central value from previous result stays the same).
 - $\Delta(A_{cp})$ uncertainty Is expected to be 0.34%
- Time-dependent CP asymmetry in $B^0 \rightarrow K_s \pi^0 \gamma$ decays
 - Significant improvements expected over previous result
 - Measure symmetry parameter S in this channel (and in B⁰→ρ⁰γ decays)

