W boson production in association with jets at CMS

On behalf of the CMS Collaboration

Kadir Ocalan, Necmettin Erbakan University

La Thuile 2017: XXXI Les Rencontres de Physique de la Vallée d'Aoste, 5-11 March 2017, La Thuile, Italy

Overview

- Measurements of W boson + jets production rates and properties in proton-proton collisions at the LHC are important for:
 - testing pQCD predictions at the highest jet transverse momentum and jet multiplicities
 - tuning MC generators and theoretical calculations
 - probing strange, heavy flavor, and gluon content in the proton
 - providing inputs to constrain parton distribution functions
 - modeling backgrounds to rare SM (Higgs, single top) and beyond SM (SUSY, dark matter) signatures
- W + jets measurements at CMS:
 - W boson is identified reconstructed via their leptonic decays (W \rightarrow *lv, l=e,µ*)
 - Leptons and jets are reconstructed using the Particle Flow algorithm, and an anti-kt clustering algorithm for jets with R= 0.5 (0.4) at 8 TeV (13 TeV)
 - Events containing an isolated lepton and jets are corrected for data-to-simulation discrepancies in lepton selection, jet energy scale (JES) and resolution (JER) calibration, pileup, and flavor tagging
 - Measured cross sections are unfolded to particle level for detector effects and compared to LO,
 NLO (+ PS) predictions from MCs, and NLO, NNLO fixed-order calculations where available

Outline

- Presented here the recent CMS W + jets results based on 8 TeV (2012, L \leq 19.8 fb⁻¹) and 13 TeV (2015, L = 2.5 fb⁻¹) pp collisions data
 - ✓ W + jets differential cross sections at 8 TeV (<u>arXiv:1610.04222</u>, accepted by PRD)
 - ✓ W + jets differential cross sections at 13 TeV (CMS-PAS-SMP-16-005)
 - ✓ W + 2 b jets cross section at 8 TeV (<u>arXiv:1608.07561</u>, accepted by EPJC)
 - ✓ EW production of W + 2 forward jets at 8 TeV (JHEP 11 (2016) 147)

W + jets at 8 TeV

- Differential cross sections in muon channel up to 7 jets and inclusive 4 jets on observables
- Several predictions by multileg (N)LO + PS, fixed-order NLO, and fixed-order NNLO for W + \geq 1 jet
- NLO theory calculations up to 4 partons. NP effects are accounted for fixed-order calculations

- ✓ Measured ranges extend up to 1 TeV on the first-leading jet p_T and 1.5 TeV on H_T for $N_{jets} ≥ 1$
- ✓ Good data description by MG5_aMC FxFx (NLO up to two jets) and N_{jetti} NNLO predictions

W + jets angular correlations at 8 TeV

- The large amount of 8 TeV data motivates for a more detailed study of angular correlation variables
- Testing the accuracy of modeling on angular variables by MC generators and NLO calculation

- ✓ Overall, best description of data by MG5_aMC FxFx merged NLO
- Fixed-order NLO shows some more deviations from data at low Δφ between muon and jets and at high Δy between jets. Sherpa 2 shows higher trend over almost the entire ranges
- More distributions (dijet, average N_{jets}, and correlations) are in <u>back-up</u>

W + jets at 13 TeV

- First results of the W + jets differential cross sections measurement available on 2015 data
- Data comparison to MG5 tree level + PS, MG5_aMC merged NLO + PS, and N_{ietti} NNLO predictions

- ✓ MG5_aMC merged NLO agrees well with data up to 5 jets on jet multiplicity
- ✓ Remarkable agreement with data on jet p_T and H_T by NLO and fixed-order N_{ietti} NNLO W + ≥ 1 jet

W + heavy flavor (HF) jets

- Challenging analyses but are of paramount importance
- Tests of pQCD. Background processes to Higgs and BSM searches
- Sensitivity to probe strange and heavy quark (b, c) content in the proton
- b quark flavor content of the PDFs: 4 flavor vs 5 flavor schemes
- HF jets are identified with CMS Combined Secondary Vertex (CSV) algorithm
- Exploiting long-lifetime and relatively large masses of b hadrons (e.g. secondary vertex and large impact parameter) using multivariate analysis techniques

W + 2b jets at 8 TeV

- Measurement of the cross section for W(e/ μ + ν) with exactly 2 b jets, background to SM Higgs production (VH, H \rightarrow bb̄)
- Theoretical predictions by MCFM NLO, MG5 + PYTHIA 6 / PYTHIA 8 in 4FS / 5FS approaches
 - MCFM is corrected for hadronization with a correction obtained from MG5 + PYTHIA 6
 - MCFM and MG5 + PYTHIA 6/8 using 4FS do not account for the bb system from DPI, that is estimated with MG5 + PYTHIA 8

- Predictions agree with each other and are consistent with CMS data within their uncertainties
- Important test of pQCD with heavy flavors: 4FS (b massive) and 5FS (b massless)

EW production of W + 2 jets at 8 TeV

- This is the first cross section measurement for this process
- Probes Triple Gauge Couplings and background to Higgs production in VBF channel
- W(e/ μ +v) plus two forwards jets with $|\eta| < 4.7$ and $m_{ii} > 1000$ GeV
- BDT used to separate signal and background (QCD W + jets)

✓ Measured cross section in agreement with SM LO prediction by MG5_aMC + PYTHIA 6 $\sigma(W \rightarrow lv + 2 \text{ jets}, l = e, \mu) = 0.42 \pm 0.04 \text{ (stat)} \pm 0.09 \text{ (syst)} \pm 0.01 \text{ (lumi)} \text{ pb}$ $\sigma_{\text{SMLO}}(W \rightarrow lv + 2 \text{ jets}, l = e, \mu) = 0.50 \pm 0.02 \text{ (scale)} \pm 0.02 \text{ (PDF)} \text{ pb}$

Conclusion

- CMS has provided unique precision tests for pQCD effects on production of W boson in association with jets (including HF jets) using the large pp collisions data
- Differential cross sections are measured over several orders of magnitude as a function of numerous variables probing wider kinematic regimes (TeV-scale jets!)
- Different predictions including LO, NLO ME + PS, fixed-order NLO and NNLO (x NP) have been scrutinized with data
- Best description of unfolded data with NLO ME + PS and fixed-order N_{ietti} NNLO
- Measured fiducial cross sections for W + bb and EW W + 2 jets processes are in agreement with the SM predictions
- Many more CMS results are still to come with unprecedented kinematic reach and more precise description of LHC Run II data on V + jets including heavy flavors!

Thank you

Back-up slides

QCD W + jets analyses

- Measurements with higher statistical precisions ($\sigma_{W+jets} \sim 10 \times \sigma_{Z+jets}$)
- Probe wider kinematic regimes on several variables sensitive to higher-order processes
- Large backgrounds of QCD multijet and top pair production
 - Estimate QCD background from data (by requiring non-isolated muon selection in the $M_{\rm T}$ variable)
 - Top rejection at higher jet multiplicity bins using anti-b tag selection
 - Suppress contribution from Drell-Yan background by vetoing extra leptons
- Measured cross sections are in fiducial phase space of $W(e/\mu+v)$ +jets
 - Detector acceptance of $|\eta| < 2.1$ (~2.4) for leptons and $|\eta$ (or y)| < 2.4 (< 4.7 forward) for jets
 - Reconstruction of isolated leptons and jets typically with $p_T > 25 30 \text{ GeV}$
 - Identify escaping neutrino using E_T^{miss}, use an M_T(W) selection for rejection of non-W final states
- Data distributions are unfolded for detector effects to the fiducial phase space at particle level
- Compare unfolded data to available MC generators and to fixedorder calculations (after correction for non-perturbative (NP) effects such as hadronization and MPI)

K.Ocalan

Summary of theoretical predictions

• W + jets at 8 TeV / 13 TeV

- MADGRAPH 5 + PYTHIA 6 using CTEQ6L1 PDF, ME + PS merged with kt-MLM
- MADGRAPH 5_AMC@NLO + PYTHIA 8 using FxFx merging scheme, ME computation up to 2 jets at NLO accuracy, ME using NNPDF3.0 and PS using NNPDF2.3
- SHERPA 2 (+ BLACKHAT) NLO up to 2 partons and using CT10 PDF, ME + PS merged with MEPS@NLO
- BLACKHAT + SHERPA, fixed-order NLO up to 4 jets, using CT10 PDF
- N_{ietti} NNLO for W + \geq 1 jet (Phys. Rev. Lett. 115, 062002) using CT14 NNLO PDF

• W + bb at 8 TeV

- MADGRAPH 5 + PYTHIA 6 in 5FS using CTEQ6L PDF
- MADGRAPH 5 + PYTHIA 6 / PYTHIA 8 in 4FS using NNLO PDF, corrected for DPI
- MCFM NLO using MSTW2008 PDF, corrected for hadronization and DPI effects

W + 2 forward jets at 8 TeV

- MADGRAPH 5_AMC@NLO + PYTHIA 6 at LO, using CTEQ6L1 PDF
- Total cross section for MADGRAPH 5 tree level LO is normalized to the NNLO cross section computed with FEWZ
- Non-perturbative corrections are applied to fixed-order calculations to bring them in line with measurements
- Z2* (CUETP8M1) tune is used in PYTHIA 6 (PYTHIA 8) consistently in analyses

W + dijet at 8 TeV

 Dependence of the measured cross sections on the dijet transverse momentum and invariant mass that are sensitive to the presence of physics beyond the SM in dijet final states

 \checkmark For dijet p_T and $M_{j1,j2}$, different generators give similar prediction, apart from Sherpa 2

W + jets at 8 TeV: $\Delta \phi(j_F, j_B)$ and $\Delta y(j_F, j_B)$

- $\Delta \phi(j_F, j_B)$: A sensitive test of modeling of higher-order corrections in theoretical calculations
- $\Delta y(j_{F'}, j_B)$: A test of wide-angle parton radiation and ME + PS matching schemes

Predictions tend to undershoot data at high rapidity separation of jets, except Sherpa 2

W + jets at 8 TeV: Average number of jets <N_{jets}>

• Sensitivity to the effects of the higher-order processes

✓ Excellent description of data over the entire ranges of H_T for $N_{jets} \ge 1$ (2) jet left (right)

W + HF measurements

- Measurements of the W + HF (b, c) jets processes are crucial for the understanding of SM Higgs, single top, and searches for new physics
- W + b is sensitive to gluon splitting and intrinsic-b PDF
- W + c is sensitive to strange PDF and gluon splitting

- Rely on displaced vertex reconstruction (HF jet tagging) and bottom/charm separation:
 - Signature of a b hadron decay is a displaced vertex:
 - Long lifetime of B hadrons ($c\tau \sim 450 \mu m$) + boost
 - B hadrons travel L_{xy} ~ 3mm before decaying with large charged track multiplicity
 - improved tagging performance from combining several inputs (displaced vertex, lifetime, jet kinematics) with multivariate algos
 - c-jets and b-jets separation achieved by explicit reconstruction of D mesons or statistical discriminants
- Background levels are higher than for V + light jets channels. Added model uncertainties include choice of flavor scheme (FS), quark masses, etc.
- Signal extraction based on fit to distributions sensitive to jet flavor (see <u>next page</u>)
- CMS tests different b-initiated processes along with predictions:
 - 4 flavors number scheme (4FS): massive b-quark generated through gluon splitting
 - 5 flavors number scheme (5FS): massless b-quark generated in the initial state by DGLAB evolution

(see talk by E. Barberis in APS 2017 April Meeting)

jet

prompt tracks

W + bb

- Production of W(\rightarrow Iv, I = μ , e) + bb, signal region: $p_T(I) > 30$ GeV and $|\eta(I)| < 2.1$, exactly two b-tagged jets with $p_T(b) > 25$ GeV and $|\eta(b)| < 2.4$, veto on other jets
- Likelihood fit to M_T(W) in two tt control regions: fit in tt-multijet to estimate b tagging efficiency scale factors and in tt-multilepton to adjust for JES in simulation
- Then, extract W+bb event yield by fitting in the signal region in two lepton channels

Snapshot of SM V + jets cross sections at CMS

 CMS W + jets measurements at 7 TeV, 8 TeV, and 13 TeV spanning many orders of magnitude in cross section up to higher jet multiplicities