

Lepton Flavour Universality tests at LHCb

particlezoo.net

LHCh

Stefanie Reichert on behalf of the LHCb collaboration

Rencontres de Physique de la Vallée d'Aoste 08 March 2017

Introduction

In the SM, the weak couplings to leptons are universal

- → evidence of lepton flavour non-universality (LFU) would hint at new physics
- IFU studies at LHCb in various channels, which are theoretically clean, e.g
 - b→sll process (R_K) sensitive to new (pseudo)scalar operators in models with extended Higgs sector or models with Z'
 - $R(D^*)$ sensitive to models with enhanced couplings to tau leptons

The LHCb detector

tu

Forward spectrometer with acceptance $2 < \eta < 5$

Analysis strategy

PRL 113 (2014) 151601

- Search for LFU in $B^+ \to K^+ \mu^+ \mu^-$ and $B^+ \to K^+ e^+ e^-$ decays
 - → measurement of R_K in given range of dilepton mass squared defined as

$$R_{K} = \frac{\int_{q_{\min}}^{q_{\max}^{2}} \frac{d\Gamma(B^{+} \to K^{+} \mu^{+} \mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B^{+} \to K^{+} e^{+} e^{-})}{dq^{2}} dq^{2}}$$

SM prediction: $R_K = 1.00030^{+0.00010}_{+0.00007}$ [JHEP 12 (2007) 040]
 QED corrections: $\Delta R_K = +3\%$ [Eur Phys. J. C76 (2016) 440]

Analysis strategy

PRL 113 (2014) 151601

• Measurement of R_K in $1 < q^2 < 6 \text{ GeV}^2$ as double-ratio with normalisation channel $B^+ \to J/\Psi K^+$ with $J/\Psi \to \mu^+\mu^-$ and $J/\Psi \to e^+e^-$

- Measure yields and efficiencies of normalisation and signal channels
- Most systematic uncertainties cancel out in double-ratio

Analysis strategy

- Analysis performed on LHCb's 2011 and 2012 dataset of 3fb⁻¹ recorded at centre-of-mass energies of 7 and 8TeV
- Similar selection of signal and normalisation channels
- Remove contributions from charmonium in signal channel
 - $B^+
 ightarrow J/\Psi K^+$, and in
 - $B^+ \to \Psi(2S)K^+$

rom supplementary materia

8

PRL 113 (2014) 151601

Trigger and cut-based preselection followed by MVA

- → suppress combinatorial background
- $B^+ \to J/\Psi(\to \ell^+ \ell^-) K^+$ as signal proxy

Selection

- upper sideband in $m(K\ell\ell)$ of $B^+ \to K^+ \ell^+ \ell^-$ as background
- training variables: kinematic, topological, vertex quality, ...

 \rightarrow retains 60-70% of the signal while removing 95% of background

Signal yield extraction

- Signal yields extracted from unbinned extended maximum likelihood fit to $m(K\ell\ell)$
- Signal shapes studied on control sample
- For the electron mode, signal shape depends on
 - # bremsstrahlungs photons associated with the electrons
 - electron p_T & event occupancy
- Data split in categories depending on trigger and # bremsstrahlungs photons

PRL 113 (2014) 151601

Signal yield extraction

Results and systematic uncertainties

R_K extracted from $\mathcal{N}_{B^+ \to K^+ \mu^+ \mu^-} = 1126 \pm 41$ and from $B^+ \to K^+ e^+ e^-$ samples for different trigger categories

Triggered by	Electron	Kaon	Other
Yield	172^{+20}_{-19}	20^{+16}_{-14}	62 ± 13
Rĸ	$0.72^{+0.09}_{-0.08} \pm 0.04$	$1.84^{+1.15}_{-0.82} \pm 0.04$	$0.61^{+0.17}_{-0.07} \pm 0.04$

Dominant systematics

- Mass shape of $B^+ \to K^+ e^+ e^-$
 - resolution
 - partially reconstructed backgrounds
- Trigger efficiencies

Results and systematic uncertainties

R_K extracted from $\mathcal{N}_{B^+ \to K^+ \mu^+ \mu^-} = 1126 \pm 41$ and from $B^+ \to K^+ e^+ e^-$ samples for different trigger categories

Triggered by	Electron	Kaon	Other
Yield	172^{+20}_{-19}	20^{+16}_{-14}	62 ± 13
Rĸ	$0.72^{+0.09}_{-0.08} \pm 0.04$	$1.84^{+1.15}_{-0.82} \pm 0.04$	$0.61^{+0.17}_{-0.07} \pm 0.04$

R_K is measured to be

$$R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$$

 \rightarrow 2.6 σ deviation from SM prediction

Result compared to Belle & BaBar

Tensions with SM observed in various $b \rightarrow$ sll transitions \rightarrow hadronic uncertainties cancel in R_K

Analysis strategy

PRL 115 (2015) 111803

Similar to R_K , measure JFU in semileptonic B decays through

$$R(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})}$$

- BaBar has observed a deviation of 2.7 σ from the SM prediction of $R(D^*) = 0.252 \pm 0.003$ [PR D85 (2012) 094025]
- Analysis is performed on LHCb's 3fb⁻¹ dataset
- Signal and normalisation decay chains are reconstructed with $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ and $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$ decays, resulting in the same visible final state
- ▶ First measurement of R(D^{*}) at a hadron collider!

- distributions of signal and normalisation channel $B \rightarrow D^{**} \mu \nu$ Cut-based preselection to reduce combinatorics $B \rightarrow D^* \mu \nu$ Background studies from data: 0.09 Arbitrary units from supplementary material 0.08 • $D^{*+}\mu^+$ - combinations of D^{*} and 0.07 0.06 random muons 0.05 0.04 • $D^0\pi^-\mu^-$ - misreconstructed D* decays 0.03 • $D^{*+}h^{\pm}$ - misidentification of h $\leftrightarrow \mu$ 0.02 0.01 Isolation requirements on $D^{*+}\mu^{-}$ 0 -1 -0.5 0.5 0 Highest BDT output suppresses partially reconstructed B decays \rightarrow MVA classifier to retain events with signal B decays
- Selection

Trigger selection chosen to preserve distinct kinematic

tu

PRL 115 (2015) 111803

Selection

Signal, normalisation and background channels separated by exploiting distinct kinematic distributions caused by the $\tau - \mu$ mass difference and presence of neutrinos

0.05

0.04

0.03

0.02

0.01

- Most discriminating variables; computed in B rest frame
 - missing mass squared $m_{
 m miss}^2$
 - squared four-momentum transfer q^2
 - muon energy E_{μ}^{*}
- Estimation of B momentum
 - vector from PV to B decay vertex → B momentum direction
 - $(p_B)_z = (m_B/m_{\text{reco}})(p_{\text{reco}})_z$
- Resolution of rest frame variables ~15-20%

 $D^{*+}\mu^+$ data $B \rightarrow D^* \tau v$ simulation

<u>lí í í í</u>

4

6

2

0.

Signal yield extraction

tu

- Maximum likelihood fit of binned three-dimensional $E_{\mu}^{*}, m_{\rm miss}^{2}, q^{2}$ templates for signal, normalisation and background contributions
- Kinematic distributions for signal, normalisation and background channels derived from simulation
- Fit constraints from form factors of $B \to D^{*/**} \ell \nu_{\ell}, \ \ell = \mu, \tau$
- Fit parameters
 - relative contributions of signal and normalisation channels
 - form factor parameters
 - background yields

Fit projections

PRL 115 (2015) 111803

Result and systematic uncertainties

PRL 115 (2015) 111803

▶
$$\bar{B}^0 \rightarrow D^{*+} \mu^- \bar{\nu}_\mu$$
 signal yield
 363000 ± 1600 and
uncorrected ratio

$$\frac{N(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{N(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})} = (4.54 \pm 0.46)\%$$

Accounting for efficiencies and $\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau)$

$$R(D^*) = 0.336 \pm 0.027 \pm 0.030$$

 $\rightarrow 2.1\sigma$ deviation from SM

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$B^0 \rightarrow D^{*+}(\tau^-/\mu^-)\bar{\nu}$ form factors	0.6
$\bar{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape correction	s 0.5
$\mathcal{B}(\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B} \to D^{**} \mu^- \bar{\nu}_{\mu})$	0.5
$\bar{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\bar{B} \to D^{**} (\to D^{*+} \pi) \mu^- \bar{\nu}_{\mu}$ form factors	0.3
$\bar{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form factors	0.2
$\mathcal{B}(\tau^- o \mu^- \bar{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

Comparison with previous experiments

Courtesy of K. De Bruyn

R(D) versus $R(D^*)$

 \rightarrow combination of measurements shows tension wrt SM prediction of 3.9 σ

LFU from cross section measurement

JHEP 10 (2016) 030

- Measurement of forward $W \rightarrow e\nu$ production cross-section on LHCb data recorded in 2012 at a centre-of-mass energy of 8 TeV corresponding to 2/fb
- Input of $W \to \mu \nu$ production cross-section measurement performed on same dataset allows to extract $\mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu \nu)$ for both lepton charges and compute an average
 - \rightarrow search for NP in trees
 - \rightarrow complementary to searches for NP in loops as in R_K

JHEP 01 (2016) 155

Analysis strategy JHEP 10 (2016) 030 $W \rightarrow e\nu$

- $W \to \mu \nu$
- Cross-section measured in eight bins of pseudo-rapidity per lepton charge → binned ML template fits to lepton p_T

Selection

- trigger including global event cut (GEC)
- isolated electron (muon) with $p_T > 20$ GeV and within $2.00 < \eta < 4.25$
- Efficiencies from e.g.
 GEC, (track) reconstruction, selection, particle identification data-driven or from simulation

Analysis strategy

 $W \to e\nu$

- Main backgrounds
 - $Z \rightarrow ee$ and $Z \rightarrow \tau\tau$
 - $W \to \tau (\to eX) \nu$
 - prompt $\gamma(\rightarrow ee)$ production
 - hadronic backgrounds
 - misidentified hadrons ('fake' leptons)
 - semileptonic heavy flavour decays
 - decay in flight
 - $t\overline{t}$ production

 $W \to \mu \nu$

- Main backgrounds
 - $Z \to \tau \tau$ with $\tau \to \mu X$
 - $Z \to \mu \mu$

•
$$W \to \tau (\to \mu X) \nu$$

Cross-section results for $W \to e \nu$

JHEP 10 (2016) 030

- Fit templates mostly taken from simulation
 - → data-driven method for 'fake' electrons and heavy flavour decays
- Ratio of $W \to \tau \nu$ to $W \to e\nu$ constrained

Results

$$\sigma_{W^- \to e^- \bar{\nu}} = (809.0 \pm 1.9 \pm 18.1 \pm 7.0 \pm 9.4) \text{pb}$$

$$\sigma_{W^+ \to e^+ \nu} = (1124.4 \pm 2.1 \pm 21.5 \pm 11.2 \pm 13.0) \text{pb}$$

$$\downarrow \text{LHC beam energy} \qquad \downarrow \text{LHC beam energy}$$

Cross-section results for $W\to \mu\nu_{\rm _{JHEP}}$

JHEP 01 (2016) 155

- Fit templates mostly taken from simulation
 - → data-driven method for 'fake' muons and heavy flavour decays
- Dominant systematics from
 - fit templates,
 - efficiencies
- Results

 $\sigma_{W^- \to \mu^- \bar{\nu}} = (818.4 \pm 1.9 \pm 5.0 \pm 7.0 \pm 9.5) \text{pb}$ $\sigma_{W^+ \to \mu^+ \nu} = (1093.6 \pm 2.1 \pm 7.2 \pm 10.9 \pm 12.7) \text{pb}$

Results on $\mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)$ JHEP 10 (2016) 030

Within $2.00 < \eta^l < 3.50$, the branching fraction ratios are

Results on
$$\mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)$$

Within $2.00 < \eta^l < 3.50$, the branching fraction ratios are

$$\frac{\mathcal{B}(W^+ \to e^+ \nu_e)}{\mathcal{B}(W^+ \to \mu^+ \nu_\mu)} = 1.024 \pm 0.003 \pm 0.019$$
$$\frac{\mathcal{B}(W^- \to e^- \bar{\nu}_e)}{\mathcal{B}(W^- \to \mu^- \bar{\nu}_\mu)} = 1.014 \pm 0.004 \pm 0.022$$
$$\frac{\mathcal{B}(W \to \mu^- \bar{\nu}_\mu)}{\mathcal{B}(W \to \mu\nu)} = 1.020 \pm 0.002 \pm 0.019$$

Comparison with other experiments

CDF J. Phys. G34, 2457 (2007)	⊷∇⊣	1.018±0.025		
DØ Chin. Phys. C, 38, 090001 (2014)	└────▽───	1.123±0.126		
LEP (Combined) Phys. Rept. 532, 119-244 (2013)	н_н	1.007±0.019		
ATLAS Phys. Rev. D85, 072004 (2012)	нОч	1.006±0.024		
LHCb W	юч	1.020±0.019		
LHCb W^+	юч	1.024±0.019		
LHCb W	+O-1	1.014±0.022		
07	08 09 1 11 12	<u> </u>		
$\mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)$				

Summary

LHCb has seen deviations from SM predictions in LFU studies

- not in $\mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)$
- in R_K of 2.6 σ and
- in R(D^{*}) of 2.1 σ \rightarrow combination of R(D^{*}) and R(D) for various experiments exceeds the SM prediction at 3.9 σ

New physics?

Summary

LHCb has seen deviations from SM predictions in LFU studies

- not in $\mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)$
- in R_K of 2.6 σ and
- in $R(D^*)$ of 2.1 $\sigma \rightarrow$ combination of $R(D^*)$ and R(D) for various

experiments exceeds the SM prediction at 3.9 σ

Summary

LHCb has seen deviations from SM predictions in LFU studies

- not in $\mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)$
- in R_{K} of 2.6 σ and
- in R(D^{*}) of 2.1 σ \rightarrow combination of R(D^{*}) and R(D) for various experiments exceeds the SM prediction at 3.9 σ

When you make a big Scientific Discovery, It takes a while to	SO THERE ARE PROBABLY SEVERAL RESEARCH TEAMS OUT THERE WHO ARE SITTING		5000 WHAT ARE YOU WORKING ON?	xkcd.com
GET IT PURI IGHED	ON NORFI-PRIZE-LIDRITHY	1 1		

Hope to shed light onto the nature of these tensions soon!

Thank you.

Stefanie Reichert, TU Dortmund

Lepton identification at LHCb

Electrons

- match track to cluster in electromagnetic calorimeters
- include bremsstrahlung photons
- MVA classifier using information from tracking system, Cherenkov detectors and calorimeter
- Muons
 - penetrate calorimeters and iron filters in muon stations
 - MVA classifier using information from tracking system, muon chambers, Cherenkov detectors and calorimeters

Taus

- difficult to reconstruct due to final states involving (several) neutrinos
- reconstructed eg. in the channel $au^-
 ightarrow \mu^- \bar{
 u}_\mu
 u_ au$

Stefanie Reichert, TU Dortmund

Backgrounds

- Misreconstructed $B^+ \to J/\Psi K^+$ and $B^+ \to \Psi(2S)K^+$ decays through kaon \leftarrow lepton identification
 - → excluded by requirements on mass, particle identification and acceptance
- Semileptonic B decays, eg. B⁺ → D
 ⁰(→ K⁺π⁻)ℓ⁺ν_ℓ by misidentification of one hadron as lepton
 → veto based on Kℓ mass under hadron mass hypothesis
- Partially reconstructed B decays with reconstructed B masses shifted to the lower sideband
 - → excluded in $B^+ \to K^+ \mu^+ \mu^-$ due to choice of signal mass window
 - \rightarrow accounted for in fit to $m(K\ell\ell)$

▶ R_K is measured to be

$$R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$$

 \rightarrow 2.6 σ deviation from SM prediction

Branching fraction of $B^+ \to K^+ e^+ e^-$ extracted from ratio

$$\frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to J/\Psi(\to e^+ e^-)K^+)}$$

$$\mathcal{B}(B^+ \to K^+ e^+ e^-) = \left(1.56^{+0.19}_{-0.15} \, {}^{+0.06}_{-0.04}\right) \times 10^{-7}$$

Fit projections

PRL 115 (2015) 111803

Propagation of (systematic) uncertainties

- Correlations between measurements in bins of η^l and lepton charge accounted for
- Statistical uncertainties assumed to be uncorrelated
- Correlations of systematic uncertainties determined by varying sources of systematic uncertainties by one standard deviation
- For the branching fraction ratio, the $W\to e\nu$ and $W\to \mu\nu$ measurements are taken to be uncorrelated
- Uncertainties due to GEC efficiency and acceptance correction assumed to be fully correlated

Comparison of $W \to \ell \nu$ results

JHEP 10 (2016) 030

JHEP 10 (2016) 030

