Dark Matter searches at CMS

Bhawna Gomber

University of Wisconsin - Madison La Thuile 2017: March 5-11 La Thuile, Italy

The search for Dark Matter

- Evidence of dark matter well established from astrophysical observations
 - The exact nature of DM is still unknown
- **LHC** provides a prime laboratory for production of DM
 - Can probe a wide range of DM/SM interaction types

Benchmark signatures for LHC DM searches

- **Typically look for \mathbf{E}_{\mathbf{T}}^{\text{miss}} + \mathbf{X}**
 - X = jet, γ , W, Z, H, tt, bb, t
- Use Simplified models to interpret results (arXiv : 1507.00966)
 - DM particle is a Dirac fermion
 - DM particles are pair-produced
 - A new massive particle mediates the DM-SM interaction
 - Minimal flavor violation
 - Mediator has minimal decay width
- Minimal set of parameters
 - $M_{MED}, M_{DM}, g_{SM}, g_{DM}$

+ CMS 13 TeV Searches for Dark Matter

Focus of this talk

X	Dataset	CMS Documentation
jet or V (hadronic)	2016, 12.9 fb	EXO-16-037
photon	2016, 12.9 fb	EXO-16-039
Z (II)	2015, 2.3 fb	EXO-16-010
Z (II)	2016, 12.9 fb	EXO-16-038
Higgs (bb)	2015, 2.3 fb	EXO-16-012
Higgs (γγ)	2015, 2.3 fb	EXO-16-011
tt (semilep+had)	2015, 2.2 fb	EXO-16-005
t (hadronic)	2016, 12.9 fb	EXO-16-040

- Search for large E^{T}_{miss} and > high- p_{T} jets, veto e, μ , τ , γ , b-jet
 - **Encompasses both monojet and mono-W/Z (decaying hadronically)**

- Search for large E^{T}_{miss} and > high- p_{T} jets, veto e, μ , τ , γ , b-jet
 - Encompasses both monojet and mono-W/Z (decaying hadronically)
- After basic ID, separate into two categories for each
 - **Mono-V** : "fat jets" ak8jets for highly boosted W/Z
 - E_{miss}^{T} $p_{T}^{j1} > 250 \text{ GeV}$
 - Jet sub-structure
 - Mass 65 105 GeV
 - N-subjettiness (τ_N) : Likelihood of originating from 2 jets variable
 - $\tau_2/\tau_1 < 0.6$
 - **Mono-jet** : remaining events with E^T_{miss} > 200 GeV and $p_T^{j1} > 100 \text{ GeV}$

- Background dominated by Z(vv)+jets and W(lv)+jets
- Definition of multiple control regions (CRs) to constrain EWK backgrounds
 - Dilepton ($\mu\mu$ /ee), Single-lepton(μ /e) and Photon + jets
- Bin-by-bin transfer factors (TF) used to derive event yields from control to signal region from data
 - Combined maximum-likelihood fit to SR and CR's

- **•** Search for large E_{miss}^{T} and > high-p_T jets, veto e, μ , τ , γ , b-jet
 - Encompasses both monojet and mono-W/Z (decaying hadronically)
- Background dominated by Z(vv)+jets and W(lv)+jets

Bhawna Gomber, University of Wisconsin-Madison

Dark Matter Searches at CMS

- No excess observed : set limits on cross section in simplified model
- Vector/Axial mediator mass up to 1.95 TeV excluded
- (Psuedo) scalar mediator mass up to (430) 100 GeV excluded

Vector Mediator

Pseudo-scalar Mediator

Bhawna Gomber, University of Wisconsin-Madison Dark Ma

Dark Matter Searches at CMS

- BR (h(125) -> invisble) < 0.44 (0.56 expected)
- Results recast to limits on SI/SD DM-nucleon scattering cross sections
- Compare to direct detection experiment limits

ark Matter Searches at CMS

Axial-vector Mediator

Scalar Mediator

Mono-Photon

- Look for events with $E_{miss}^T > 170$ GeV and > 1 central photon with $P_T > 175$ GeV, veto e, μ
- Z(νν)γ and W(lv)γ estimated using MC with NNLO QCD (DYRES) + NLO EWK corrections, misID and non-collision backgrounds estimated from data

Mono-Photon

- No excess observed, set limits on DM and ADD LED graviton
 - Mediator mass up to 760 GeV excluded (vector/axial vector)
 - Dim-7 EFT scale lambda up to 620 GeV excluded
 - ADD LED MD > 2.44 to 2.60 TeV for n=3 to n=6 extra dimension

Mono-Z (ll)

- Require $E_{miss}^{T} > 100$ GeV and $ee/\mu\mu$ with $P_{T}^{II} > 60$ GeV, E_{miss}^{T} and P_{T}^{II} balance, veto extra e, μ , τ , b-jet, events with more than 1 jet
- ZZ/WZ background estimated from MC (with NNLO QCD and NLO EWK corrections), tt, W, WW, tW, Z ->ττ background estimated from the eµ data.

Mono-Z (ll)

- No excess observed. Limits on cross section with 2D-scan of m_{DM} vs M_{MED} for vector/axial mediators
 - Mediator mass up to 400 GeV excluded
- BR (h(125)->invisible) < 0.86 (0.70 expected), included ggZh

Mono-Top : Hadronic

- P_T of jet and E^T_{miss} > 250 GeV, top-tagged jet mass 110-210 GeV, Jet substructure
- Flavor changing neutral current (FCNC) vector up to 1.5 TeV, charged scalar 0.9- 2.7 TeV excluded

-Mono-Higgs (bb, γγ)

- Higgs -> bb
 - Largest BF (58%), but poor mass resolution (10 %)
 - **Resolved : 2 b-tagged jets,** $p_T^{bb}/E_{miss}^T > 150/170 \text{ GeV}$
 - **Boosted : 1 fat jet with subjets b-tagged,** $p_T^{bb}/E^T_{miss} > 200 \text{ GeV}$
- Higgs $\rightarrow \gamma \gamma$:
 - Small BF (~0.2%), but mass resolution (1-2%)
 - $E_{\text{miss}}^{\text{T}} > 105 \text{ GeV}, p_{\text{T}}^{\gamma\gamma} > 90 \text{ GeV}, p_{\text{T}}^{\gamma1}(p_{\text{T}}^{\gamma2})/m^{\gamma\gamma} > 0.5 (0.25)$

Mono-Higgs (bb, γγ)

- No excess observed, set limits on Type-2 2HDM
 - For M_A=300 GeV, excluded Mz'=600 GeV to 1863 GeV with gz =0.8

+ Summary of Mono-X searches

- Fix $g_q = 0.25$ and $g_{DM} = 1$
- Reinterpret dijet searches with resolved and boosted jets
 - Cover the off-shell region

+ Conclusion

- CMS searches for dark matter have been performed with various mono-X final states
 - Results with 2016 data from mono-jet/photon/Z/top
 - First results from mono-Higgs and mono-tt (hadronic)

No sign of excess yet

- Provide limits on simplified models and EFTs
- Results were recast in terms of nucleon-DM scattering cross section
- Expect updated with the full 2016 data and combinations of different mono-X channels

Bhawna Gomber, Dark Matter Searches at CMS

+ Electron Selection

3/10/17

High redundancy of mu system, 4 stations along track Iron between stations may cause **bremsstrahlung** for O(TeV) muons p_T <200 GeV tracker in B=3.8T, p_T >200 GeV mu+tracker

Dedicated muon selection:

- Special algorithm to consider showering
- At least 1 pixel hit
- Number of measured tracker layers > 8
- Transverse impact parameter d0 < =0.2cm (Z'), 0.02cm (W') reject cosmics, value for W' tighter than other analyses, Z' rejects in addition back-to-back muons
- >= 2 matched muon segments
- Relative track isolation <0.10 in $\Delta R < 0.3$
- No cut on chi2 cut introduces a 4-6% inefficiency for muons >500 GeV

+ Photon Selection

- ✓ Background contamination and invariant mass resolution depends on:
 - pseudorapidity
 - cluster shape, i.e. conversion probability (R9)

- ✓ Same approach like H->γγ standard cut-based photon-ID
 - ECAL fiducial region (lηl < 2.4 excluding EB-EE gap)
 - Isolation and identification requirements:

	barrel		endcap	
	$R_9 > 0.94$	$R_9 < 0.94$	$R_9 > 0.94$	$R_9 < 0.94$
PF isolation sum, chosen vertex	6	4.7	5.6	3.6
PF isolation sum worst vertex	10	6.5	5.6	4.4
Charged PF isolation sum	3.8	2.5	3.1	2.2
$\sigma_{i\eta i\eta}$	0.0108	0.0102	0.028	0.028
H/E	0.124	0.092	0.142	0.063
R ₉	0.94	0.298	0.94	0.24

- Hadronic (semileptonic) channel with E^T_{miss} > 200 (160) GeV
- Major background from ttbar events with one less hadronic top
 - Apply resolved-hadronic-top tagger to the hadronic channel and categorize events based on the number of top tags, b-tagged jets, and Ap(jet, Et_{miss}), up to 30% improvement

Mono-Photon : Main Backgrounds

 $Z\gamma \rightarrow vv\gamma$, $W\gamma \rightarrow (\ell)v\gamma$ (ℓ not reconstructed) ~ 80% of total background

- estimated from simulations with NNLO QCD & NLO EW corrections
- validated using data control samples: $Z\gamma \rightarrow \ell^+ \ell^- \gamma$, $W\gamma \rightarrow \ell \nu \gamma$

 $W \rightarrow ev$ with *e* misidentified as a photon

• measured in W \rightarrow ev data, with data-driven e $\rightarrow \gamma$ mis-ID rate

QCD multijet events with a jet misidentified as a photon

• measured in jet-enriched data, with data-driven jet $\rightarrow \gamma$ mis-ID rate

Noncollision

Fake photons

Noncollision background (mostly beam halo)

Measured in data from a template fit to calorimeter timing profiles

25

Same Final Sta

Non Collision Backgrounds

- First we look at full timing distribution of photons
 - Default supercluster reconstruction algorithm discards hits with |t| > 3 ns cut
 - Full re-reconstruction of 2015 performed removing this constraint

Halo Template : Mip total energy > 4.9 GeV

Spike Template : Full candidate selection and reverse the topological shower shape spike cleaning cuts

Prompt Template : W Candidates selection with pixel match and good shower shape

Beam Halo : 13.41 +/- 6.27 events Spike : 5.63 +/- 2.2 events

Bhawna Gomber, Exotica MET+X Group Meeting

Full Timing

+ Higgs Portal

- In Higgs-portal models of DM, a Higgs boson is the only mediator between DM and SM sectors
 - the Higgs can be produced with SM cross section, but have a significant branching fraction to DM particles (B_{inv})
- The Higgs must be produced in association with a visible system
 - several channels considered and combined

How To Translate (Scalar)

In general, the SI DM-nucleon scattering cross section takes the form

$$\sigma_{\rm SI} = \frac{f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4},$$
(4.1)

where $\mu_{n\chi} = m_n m_{\rm DM}/(m_n + m_{\rm DM})$ is the DM-nucleon reduced mass with $m_n \simeq 0.939\,{
m GeV}$

For the simplified model with scalar mediator exchange we follow the recommendation of ATLAS/CMS DM Forum [1] and assume that the scalar mediator couples to all quarks (like e.g. the SM Higgs). In general the formula for $f(g_q)$ is

$$f^{n,p}(g_q) = \frac{m_n}{v} \left[\sum_{q=u,d,s} f_q^{n,p} g_q + \frac{2}{27} f_{\text{TG}}^{n,p} \sum_{Q=c,b,t} g_Q \right].$$
(4.4)

these values, we find that numerically

$$f(g_q) = 1.16 \cdot 10^{-3} g_q \,,$$

and therefore the size of a typical cross section is

$$\sigma_{\mathrm{SI}} \simeq 6.9 \times 10^{-43} \mathrm{~cm}^2 \cdot \left(\frac{g_q g_{\mathrm{DM}}}{1}\right)^2 \left(\frac{125 \mathrm{~GeV}}{M_{\mathrm{med}}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \mathrm{~GeV}}\right)^2 \,.$$

How To Translate (Vector)

In general, the SI DM-nucleon scattering cross section takes the form

$$\sigma_{\rm SI} = \frac{f^2(g_q)g_{\rm DM}^2\mu_{n\chi}^2}{\pi M_{\rm med}^4},$$
(4.1)

.

where $\mu_{n\chi} = m_n m_{\rm DM} / (m_n + m_{\rm DM})$ is the DM-nucleon reduced mass with $m_n \simeq 0.939 \, {\rm GeV}$

For the vector mediator,

$$f(g_q) = 3g_q\,,$$

and hence

$$\sigma_{\mathrm{SI}} \simeq 6.9 \times 10^{-41} \mathrm{~cm}^2 \cdot \left(\frac{g_q g_{\mathrm{DM}}}{0.25}\right)^2 \left(\frac{1 \mathrm{~TeV}}{M_{\mathrm{med}}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \mathrm{~GeV}}\right)^2$$

Re-Interpretation Of Dijet Searches

$$(g_B')^2 = \frac{g_B^2}{2} \left(1 + \sqrt{1 + 4\frac{\Gamma_{DM}}{\Gamma(g_B)}} \right)$$

$$\begin{split} \sigma_0(g_B) &= \sigma_{DM}(g'_B, g_{DM} = 1, m_{DM}) \\ &= \frac{(g'_B)^4}{\Gamma_q(g'_B) + \Gamma_{DM}} \frac{C}{M_{med}^4} \\ &\rightarrow \frac{g_B^4}{\Gamma(g_B)} = \frac{(g'_B)^4}{\Gamma_q(g'_B) + \Gamma_{DM}} \\ &\rightarrow (g'_B)^2 = \frac{g_B^2}{2} \left(1 + \sqrt{1 + 4\frac{\Gamma_{DM}}{\Gamma(g_B)}} \right), \end{split}$$

$$\begin{split} \Gamma_{\rm V}^{\chi\bar{\chi}} &= \frac{g_{\rm DM}^2 M_{\rm med}}{12\pi} \bigg(1 - 4 \frac{m_{\rm DM}^2}{M_{\rm med}^2} \bigg)^{1/2} \bigg(1 + 2 \frac{m_{\rm DM}^2}{M_{\rm med}^2} \bigg) \quad , \\ &\Gamma_{\rm AV}^{\chi\bar{\chi}} &= \frac{g_{\rm DM}^2 M_{\rm med}}{12\pi} \bigg(1 - 4 \frac{m_{\rm DM}^2}{M_{\rm med}^2} \bigg)^{3/2} \quad , \\ &\Gamma_{\rm V}^{q\bar{q}} &= \frac{g_q^2 M_{\rm med}}{4\pi} \bigg(1 - 4 \frac{m_q^2}{M_{\rm med}^2} \bigg)^{1/2} \bigg(1 + 2 \frac{m_q^2}{M_{\rm med}^2} \bigg) \quad , \\ &\Gamma_{\rm AV}^{q\bar{q}} &= \frac{g_q^2 M_{\rm med}}{4\pi} \bigg(1 - 4 \frac{m_q^2}{M_{\rm med}^2} \bigg)^{3/2} \quad , \end{split}$$

Summary For Scalar/Pseudo-Scalar

Summary Of Limits On SI Cross Sections

Summary Of Limits On SD Cross Sections

Summary Of Mono-X For Vector/Axial

Method

- 1. Take exclusion curve in (M,M) plane
 - 90%CL
- 2. Transform to (M,x-sec) plane
 - Using formulæ from LHC Dark Matter WG (g_q=0.25, g_{DM}=1)
 - https://arxiv.org/pdf/1603.04156v1.pdf

Vector

$$\sigma_{\rm SI} \simeq 6.9 \times 10^{-41} \,\,\mathrm{cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \,\,\mathrm{TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \,\,\mathrm{GeV}}\right)^2 \,. \tag{4.3}$$

c_SI = 6.9e-41*1e12, **mR =** (0.939*mDM)/(0.939+mDM), **xsec =** (c_SI*(mR*mR)/(mMed*mMed*mMed*mMed))

Axial

$$\sigma^{\rm SD} \simeq 2.4 \times 10^{-42} \,\,\mathrm{cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \,\,\mathrm{TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \,\,\mathrm{GeV}}\right)^2 \,. \tag{4.10}$$

c_SD = 2.4e-42*1e12, mR = (0.939*mDM)/(0.939+mDM), xsec = (c_SD*(mR*mR)/(mMed*mMed*mMed*mMed))

$$g_{Z'} = 0.03 \cdot \frac{g_W}{\cos \theta_W \sin^2 \beta} \frac{\sqrt{m_{Z'}^2 - m_Z^2}}{m_Z},$$

⁶¹ providing $g_{Z'} = 0.485$ for $m_{Z'} = 1$ TeV, and $g_{Z'} = 0.974$ for $m_{Z'} = 2$ TeV.

$\mathcal{L}_{k}(\boldsymbol{\mu}^{Z(\nu\bar{\nu})},\boldsymbol{\mu},\boldsymbol{\theta}) = \prod_{i} \operatorname{Poisson} \left(d_{i}^{\gamma} | B_{i}^{\gamma}(\boldsymbol{\theta}) + \frac{\boldsymbol{\mu}_{i}^{Z(\nu\bar{\nu})}}{R_{i}^{\gamma}(\boldsymbol{\theta})} \right) \\ \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{\mu\mu} | B_{i}^{\mu\mu}(\boldsymbol{\theta}) + \frac{\boldsymbol{\mu}_{i}^{Z(\nu\bar{\nu})}}{R_{i}^{\mu\mu}(\boldsymbol{\theta})} \right) \\ \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{ee} | B_{i}^{ee}(\boldsymbol{\theta}) + \frac{\boldsymbol{\mu}_{i}^{Z(\nu\bar{\nu})}}{R_{i}^{ee}(\boldsymbol{\theta})} \right) \\ \times \prod_{i} \operatorname{Poisson} \left(d_{i}^{\mu} | B_{i}^{\mu}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta})\boldsymbol{\mu}_{i}^{Z(\nu\bar{\nu})}}{R_{i}^{e}(\boldsymbol{\theta})} \right) \right)$

$$\times \prod_{i} \operatorname{Poisson} \left(d_{i}^{\mu} | B_{i}^{\mu}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta}) \boldsymbol{\mu}_{i}^{Z(\nu \bar{\nu})}}{R_{i}^{\mu}(\boldsymbol{\theta})} \right)$$

$$\times \prod_{i} \operatorname{Poisson} \left(d_{i}^{e} | B_{i}^{e}(\boldsymbol{\theta}) + \frac{f_{i}(\boldsymbol{\theta}) \boldsymbol{\mu}_{i}^{Z(\nu \bar{\nu})}}{R_{i}^{e}(\boldsymbol{\theta})} \right)$$

$$\times \prod_{i} \operatorname{Poisson} \left(d_{i} | B_{i}(\boldsymbol{\theta}) + (1 + f_{i}(\boldsymbol{\theta})) \boldsymbol{\mu}_{i}^{Z(\nu \bar{\nu})} + \boldsymbol{\mu} S_{i}(\boldsymbol{\theta}) \right)$$

where $Poisson(x|y) = y^x e^{-y} / x!$. The symbols $d_i^{\gamma}, d_i^{\mu\mu}, d_i^{ee}, d_i^{\mu}, d_i^{e}$, and d_i denote the observed 243 number of events in each bin i of the γ +jets, dimuon, dielectron, single-muon, and single-244 electron control samples, and the signal region, respectively. The symbol f_i denotes the transfer 245 factor between the $Z(\nu\bar{\nu})$ +jets and $W(\ell\nu)$ +jets backgrounds in the signal region, and represents 246 a constraint between these backgrounds. The symbols R_i^{γ} , $R_i^{\mu\mu}$, R_i^{ee} , R_i^{μ} , and R_i^{e} are the transfer 247 factors from the γ +jets, dimuon, dielectron, single-muon, and single-electron control samples, 248 respectively, to the signal region; the contributions from other background processes in these 249 control samples are denoted by $B_i^{\gamma}, B_i^{\mu\mu}, B_i^{ee}, B_i^{\mu}$, and B_i^{e} , respectively. The parameter $\mu_i^{Z(v\bar{v})}$ 250 represents the yield of the $Z(\nu\bar{\nu})$ +jets background in each bin i of E_{T}^{miss} in the signal region, and 251 this parameter is left floating in the fit. The likelihood also includes a term for the signal region 252 in which B_i represents all the backgrounds apart from $Z(\nu\bar{\nu})$ +jets and $W(\ell\nu)$ +jets, S_i represents 253 the nominal signal prediction, and μ denotes the signal strength parameter. The systematic 254 uncertainties are modeled as nuisance parameters (θ). 255

Bhawna Gomber, Dark Matter Searches at CMS

3/10/17

Monojet : Pseudo-Scalar

+ Monojet : Uncertainties

Figure 72: Theoretical uncertainties on the Z/ γ (left) and Z/W (right) transfer factors.

Monojet : Uncertainties

Figure 71: Theoretical uncertainties on the Z/γ (left) and Z/W (right) transfer factors for the uncertainties originating from the electroweak corrections.

Figure 70: PDF and QCD scale uncertainties on the photon + jets (a), Z + jets (b), and W + jets (c) p_T^V distributions. Note that the actual uncertainties are evaluated for the ratio of such distributions accounting for correlations.

+ Higgs Modes : CMS VBF

Depending on its nature, DM will couple to theHiggs in various ways. Assuming a Higgs -> Invisible branching, one can search in several channels.

- The most tricky case is that of light mediator
- First step : put in a mediating particle (e.g s-channel Z') and look at limits vs m_z

- EFT gives good/conservative results above a few hundred GeV (high M)
 - Region I EFT is good
 - Region II EFT underestimate
 - Region III EFT overestimate

Buchmeller, Dolan, McCabe, arXiv: 1308.6799

Bhawna Gomber, Dark Matter Searches at CMS