

Status Report on the XENON1T experiment

J. Masbou, on behalf of the XENON Collaboration

The XENON Dark Matter Program

XENON10 2005 – 2007 15 cm drift TPC Total: 25 kg Target: **14** kg Fiducial: 5.4 kg

Achieved (2007) $\sigma_{SI} = 8.8 \cdot 10^{-44} \text{ cm}^2$ @ 100 GeV/c²

XENON100

2008 – 2016 30 cm drift TPC Total: 161 kg Target: **62** kg Fiducial: 34/48 kg

Achieved (2015) $\sigma_{SI} = 1.1 \cdot 10^{-45} \text{ cm}^2$ @ 55 GeV/c²

XENON1T 2012 – 2019 100 cm drift TPC Total: 3 200 kg Target: **2 000** kg Fiducial: 1 000 kg

 $\begin{array}{l} \text{Projected (2019)} \\ \sigma_{\text{SI}} = 1.6 \, \cdot \, 10^{\text{-47}} \, \text{cm}^2 \\ @ \, 50 \, \text{GeV/c}^2 \end{array}$

XENONNT 2017 (R&D) – 2023 144 cm drift TPC Total: 8 000 kg

Target: **6 000** kg Fiducial: 4 500 kg

Projected (2022) $\sigma_{SI} = 1.6 \text{ x } 10^{-48} \text{ cm}^2$ @ 50 GeV/c²

XENON experiment

21 Institutes ~130 members

Why Xenon ?

- Large mass number A (131) (Interaction cross section \propto A²)
- 50% odd isotopes (¹²⁹Xe, ¹³¹Xe) for Spin-Dependent interactions
- High stopping power, i.e. active volume is self-shielding
- Efficient scintillator (178 nm)
- Scalable to large target masses
- Electronic recoil discrimination with simultaneous measurement of scintillation and ionization

Two phase XENON TPC principle

- \rightarrow Photon (λ = 178 nm) from Scintillation process
- \rightarrow Detected by PMTs (mainly bottom array)

- \rightarrow Electrons drift
- \rightarrow Extraction in gaseous phase
- \rightarrow Proportional scintillation light

Background in XENON1T

Electron recoils (ER):

- Low energy Compton scatters from the radioactive contaminants in the detector components: U and Th chains, ⁴⁰K, ⁶⁰Co, ¹³⁷Cs.
- Intrinsic contaminants: β decays of ²²²Rn daughters, ⁸⁵Kr, ¹³⁶Xe.
- Elastic scattering of solar neutrinos off electrons.

Nuclear Recoils (NR):

JCAP04(2016)027

- Radiogenic neutrons: spontaneous fission and (alpha, n) reaction from the U and Th chains in the detector components.
- Muon-induced neutrons (Cosmogenic)
- Coherent scattering of neutrinos off the Xe nuclei (CNNS).

XENON1T facility

Water shield: deionized water as passive radiation shield Muon veto: Active muon veto against muon induced neutrons (84 PMTs)

Cryogenics: Stable conditions(3.2t LXe) **Purification:** LXe flow through getters, remove impurities

DAQ: Each channel has its own threshold, Flexible software algorithms **Readout:** Up to 300MB/s for high rate calibrations

ReStoX: Emergency recovery up to 7.6 tons of LXe **Passive:** No active cooling required to keep Xe contained

Kr Distillation: Remove Kr from system during fill or online **Rn Distillation:** Initial tests show promising reduction for Rn

Julien Masbou, La Thuile, 7th March 2017

The largest Xe double-phase TPC ever built !

- Deployed inside the inner cryostat in November 2015.
- Active Xe mass: 2 tons.
- Light sensors: 127+121 low-background 3" PMTs with average QE = 35% (R11410-21). *JINST 8 P04026 (2013)* Eur. Phys. J. C75 (2015) 11, 546
- Fully covered with high reflectivity PTFE to maximize light collection.
- Drift region: 1m height, 1m diameter.
- Highly transparent electrodes (meshes, wires).
- Cathode feedthrough tested to 100kV.

Water Shield filling

- TPC fully immersed in water since July 2016
- Background studies and calibration runs started

Muon Veto Cherenkov Detector

- The cryostat is immersed in a water shield filled with 700 tons of water
- Deionized water is used as passive shield from environmental radiation
- $^{\Xi}$ Water is constantly purified
 - Equipped with 84 high-QE, 8" PMTs
 - All walls are covered with reflective foil Detects Cherenkov light to tag muons.
 - Expected muon flux underground is 1.2 /m²h⁻¹
 → muon-induced neutron
 background is reduced to
 less than 0.01 ev/y
 thanks to muon tagging
 JINST 9 P11006 (2014)
 - Fully commissioned in March 2015

Background Reduction: 222Rn

- Successful demonstration of radon removal by cryogenic distillation at XENON100
- Reduction factor of R > 27 (95% C.L.)

XENON1T:

- Minimize leakage into purification system at Xe1T (i.e., hermetically sealed pumps)
- Low radon emanation components
- Dedicated radon emanation measurements

arXiv:1702.06942

Background Reduction: ⁸⁵Kr

- Commercial Xe contains ~ ppb of Kr
- Column principle : remove Kr from Xe by means of cryogenic distillation (gases have different boiling points)
- >6.4 × 10⁵ separation, output concentration < 0.048 ppt
- 5.5 m column, 6.5 kg/hr,
- New approach: Online Distillation
- Successfully reduced Kr to (0.62 +- 0.13) ppt measured by RGMS
- Background is now radon dominated

arXiv:1612.04284 EPJC 74, 2746 (2014)

Recovery and Storage System: ReStoX

Goals:

- Store up to 7600 kg of Xe in gaseous or liquid/solid phase under high purity conditions
- Fill Xe in ultra-high-purity conditions into detector vessel
- Recover all the Xe from the detector. In case of emergency all Xe can be safely recovered in a few hours

Double walled, high pressure (72 bar) vacuum insulated sphere of 2.1 meter diameter, cooled by LN2 and by an internal LN-based condenser.

Commissioning and First Run

- Started commissioning in April 2016 with first fill
- Other subsystems came online
- Science run began in Fall 2016:
 - Internal source calibration with ^{83m}Kr, ²²⁰Rn
 - External source calibration with AmBe, ²²⁸Th
 - Science data-taking still ongoing

Event 135 from 161103_1355 Recorded at 2016/11/03, 08:55:48 UTC, 230512896 ns

Julien Masbou, La Thuile, 7th March 2017

Earthquake of 18th January 2017

- Magnitude 5.5 earthquake ~20 km away detected
- Detector still operating and taking data

<u>Sensitivity</u>

JCAP04(2016)027

based on background predictions shown before, 2 t × y exposure:

Sensitivity Vs Time

JCAP04(2016)027

based on background predictions shown before, 2 t × y exposure:

assumptions: S1 interval: 3 - 70 PE

ER rejection 99.5% @ 50% NR acceptance \rightarrow measured LY is ~2x higher than in XENON100!

Upgrade: XENONnT

- Quick upgrade of TPC and inner cryostat
- All major systems remain unchanged
- Construct TPC in parallel to XENON1T operation
- Upgrade starting 2018

From XENON1T to XENONnT

All major systems remain unchanged, XENON1T infrastructure designed for the rapid deployment of an upgraded detector

- Muon veto efficiency essentially the same for XENONnT
- Cryostat support and levelling systems designed for an enlarged detector
- Cryostat outer vessel can accommodate
 new larger inner vessel
- Cryogenic system designed to handle additional heat load
- Modular and scalable GXe purification system
- Kr distillation column can fulfill XENONnT ⁸⁵Kr requirement
- Modular, parallelized DAQ system ready for XENONnT

Upgrades required for XENONnT

- + Larger cryostat inner vessel
- + New TPC
- + Additional ~200 PMTs, with lower radioactivity already ordered
- + Additional minor DAQ electronics
- + LXe (~ 8t in our hands)
- + New Storage System

+ Rn material selection (screening, treatment) and new Rn distillation column

Target mass of 6 tons, sensitivity to spin-independent WIMP-nucleon elastic scattering cross sections of 1.6 \times 10⁻⁴⁸ cm²

Summary

- XENON1T fully commissioned and taking Science Data
- Largest LXe TPC
- Online Physics data taking started last year and ongoing
- After 2 years of exposure, design sensitivity reached → upgrade under development : XENONnT

Monte Carlo Simulation

Reproduce via software the performance of the XENON1T detector, and predict the sensitivity of the experiment JCAP04(2016)027

Position of the ER background from the materials, negligible inside the 1 ton fiducial volume

Method:

- Input from screening campaign by all detector components
- Monte Carlo simulation with GEANT4
- Statistical treatment

Source	Bkg (evts/ton/year)
ER (materials + intrinsic + solar v)	1.6
NR from radiogenic neutrons	0.22
NR from $\boldsymbol{\nu}$ coherent scattering	0.23
Total	2.05

XENON1T: TPC Commissioning

- Cryogenics: well behaved, stable pressure and temperature
- Both charge and light are detected throughout the whole TPC
- Electron lifetime (« purity ») at a few 100 mµs and improving exponentially.
- Detector is responding to radiation as expected

Taken without muon veto, Not final performance

XENON1T: PMT, DAQ, Electronics

- all 254 PMTs operational
- DAQ electronics for TPC and muon veto installed in T-stabilized DAQ room
- detectors can be operated simultaneously (and time-synced) or independently
- PMT/DAQ commissioning ongoing

