

SUSY searches at CMS

Florent Lacroix (U. of California Riverside) on behalf of the CMS collaboration

03/10/2017 La Thuile 2017: XXXI Les Rencontres de Physique de la Vallée d'Aoste

Introduction

- Supersymmetry (SUSY) = symmetry between fermions and bosons
 - Solution for the hierarchy problem: additional particles stabilized Higgs mass
 - Dark matter candidate: if R-parity is conserved, lightest SUSY particle (LSP)
 - Unification of coupling constants at GUT scale
- SUSY can be realized in many ways: rich phenomenology
 - Minimal supersymmetric standard model (MSSM): >100 new parameters
 - Simplified Models are used for the interpretation of CMS results
- LHC has delivered >40fb⁻¹ in 2016!
- Most of the results in this talk are based on the "ICHEP dataset", corresponding to 12.9fb⁻¹ of fully certified data recorded by the CMS detector.

CMS SUSY analyses

- Inclusive analyses
 - Hadronic final states
 - Leptonic final states
- 3rd generation searches
 - Focusing on "natural SUSY"
 - Stop and sbottom searches
- Electroweak production modes, Gauge-mediated SUSY breaking analyses
 - Photons or leptons final states
- More specialized searches
 - RPV analyses
 - Di-lepton mass-edge
 - Z-resonance

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

O-lepton inclusive: HT+MHT search

- Selection :
- 3 jets with pt > 50 GeV
- HT > 300 GeV
- MHT > 300 GeV
- DeltaPhi(jet, MHT) > 0.5,0.5,0.3
- Veto isolated e/mu, pt > 10 GeV
- Data driven methods are used to estimate each background.
 - muon+jet control sample is used to estimate W and ttbar background.
 - $Z \rightarrow \mu\mu$ and γ +jets events are used for the Z background estimation.
 - Inverted DeltaPhi events are used to estimate the QCD.

HT+MHT: search bins and results

03/10/2017

O-lepton inclusive: MT2 search

 MT2 is a generalization of the transverse mass MT for the case of 2 decay chains with 2 unobserved particles:

$$M_{\text{T2}}(m_{\tilde{\chi}}) = \min_{\vec{p}_{\text{T}}^{\tilde{\chi}^{(1)}} + \vec{p}_{\text{T}}^{\tilde{\chi}^{(2)}} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)}\right) \right]$$

Sensitive variable to genuine MET:

- QCD high met events are mainly at low MT2, contrary to SUSY events.
- Includes now a monojet categorie (wo MT2).

CMS Preliminary

- Search binned in HT, Nb, Njets and MT2.
- No significant excess observed.

12.9 fb⁻¹ (13 TeV)

 $H_{-} > 1500$

SUS-16-015

O-lepton inclusive: AlphaT search

- Inclusive search based on kinematic variable alphaT:
 - Cluster jets into 2 pseudo-jets

•
$$\alpha_{\rm T} = \frac{E_{\rm T}^{j_2}}{M_{\rm T}(j_1, j_2)}$$

• If njets \geq 3:

$$\alpha_{\rm T} = \frac{1}{2} \cdot \frac{H_{\rm T} - \Delta H_{\rm T}}{\sqrt{H_{\rm T}^2 - {\not\!\!\!H_{\rm T}}^2}} = \frac{1}{2} \cdot \frac{1 - (\Delta H_{\rm T}/H_{\rm T})}{\sqrt{1 - ({\not\!\!\!H_{\rm T}}/H_{\rm T})^2}}$$

- Basic idea :
 - alphaT=0.5: perfect dijet event
 - alphaT<0.5: events with mismeasured jets
 - alphaT>0.5: events with genuine MET
 - Very effective discriminant against QCD background.

- Selection:
- HT > 200 GeV, MET>130 GeV
- Includes now monojet and asymmetric jet selections
- alphaT > 0.52
- Veto isolated e/mu/photon

03/10/2017

SUS-16-016

alphaT: search bins and results

- Search is binned in HT, N jets, N bjets and alphaT
- Data driven background estimates from muon+jets, di-muons+jets and photon+jets control samples, using transfer factors.
- All results are compatible with SM expectation.

Inclusive: Razor search

 Compute MR and R2 from the mega jets and the MET.

- MR broadly peaks at the caracteristic mass scale: $\frac{M_{\tilde{q}}^2 - M_{\tilde{\chi}}^2}{M_{\tilde{q}}}$

 Categorized events into « boxes » by lepton content, and jet and bjet multiplicities.

SUS-15-004, arXiv:1609.07658

$$M_R = \sqrt{(|\vec{p}^{j1}| + |\vec{p}^{j2})^2 - (p_z^{j1} + p_z^{j2})^2}$$
$$R \equiv \frac{M_T^R}{M_R} M_T^R \equiv \sqrt{\frac{E_T^{\text{miss}}(p_T^{j1} + p_T^{j2}) - \vec{E}_T^{\text{miss}} \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})}{2}}$$

03/10/2017

Razor: results

O-lepton summary: gluinos

Interpretation with Simplified Models for gluino-mediated production:

All analyses have similar sensitivity.

O-lepton summary: squarks

Interpretation with Simplified Models for direct production:

Here MT2 and alphaT variables help due to lower signal cross-section.

03/10/2017

1-lepton inclusive: DeltaPhi search SUS-16-019

 DeltaPhi(ptW,lepton pt) is used to separate signal and W+jets and ttbar backgrounds.

 $p_{\mathrm{T}}^{\mathrm{W}} = |\vec{p}_{\mathrm{T}}^{\ell} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}}|$

• Search bins in b-jet multiplicity (\geq 5 jets, no b and \geq 6 jets, \geq 1 b)

2-leptons: SS search

SUS-16-020

Same sign di-lepton analysis. Main background from non prompt leptons, estimated using «tight-to-loose» ratio technique based on control samples in data. Three regimes, depending on lepton pT (10<pt<25 GeV or >25 GeV), high-high, highlow and low-low.

14

multi-leptons search

- 15 off-Z signal regions and 17 on-Z signal regions
 - On-Z if OS same flavor pair find with an invariant mass within a 15 GeV window around the Z mass
- Physics backgrounds from simulation (WZ/ZZ sample is normalized to data in a control region); misidentified-lepton backgrounds from data

SUS-16-022

3rd generation searches: O-lepton top tagger

- Inclusive search using a custom, highly efficient top tagger :
 - combination of three ak4 jets of at least 30 GeV in a cone of radius 1.5
 - two jets with one consistent with a merge W
 - monojet with a mass consistent with the top mass.
- W+jets and ttbar background is estimated from muon+jet control sample.
- QCD from inverted dphi events, ttZ and Zinv from MC, corrected from data/MC differences.
- Categorization of events in bins of Ntop, Nbjets, MET and MT2.

16

O-lepton stop

₽_T [GeV]

3rd generation searches: 1-lepton stop

The main variables used in this analysis are : SUS-16-028 • MT2W, the minimum mother mass compatible with all the decay products and on-shell constraints (cf arXiv:1203.4813). $t_{\text{mod}} = \ln(\min S)$ with $S(\vec{p}_W, p_{V,Z}) = \frac{(m_W^2 - (p_V + p_\ell)^2)^2}{a^4} + \frac{(m_t^2 - (p_b + p_W)^2)^2}{a^4}$. The modified topness variable : **CMS** Preliminary 12.9 fb⁻¹ (13 TeV) 2.3 fb⁻¹ (13 TeV) Events Events / 25 GeV 10³ 10 $\widetilde{t} \rightarrow t \widetilde{\chi}_{+}^{0} (850,50) = \widetilde{t} \rightarrow t \widetilde{\chi}_{+}^{0} (600,300) \ ightarrow Data$ CMS →2l tt→1/ tW $- \tilde{t} \rightarrow b \tilde{\chi}^{\pm}$ (750,50) 1/ (not from t) 10^{3} Simulation W+jets Rare 2 jets 3 jets ≥4 jets ≥4 iets $t_{mod} > 6.4$ M^W_{T2} > 200 GeV $\widetilde{t}{\rightarrow}\,t\widetilde{\chi}_{{\scriptscriptstyle \hspace*{-0.5mm}\circ}}^{0}\,\left(300,150\right)$ $M_{T_2}^W > 200 \text{ GeV}$ $M_{T_2}^W \le 200 \text{ GeV}$ Low ΔM $\widetilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}$ (500,200) 10² $\widetilde{t} \rightarrow t \widetilde{\chi}_{1}^{0}$ (600,50) High ΔM 10 10^{-1} -450 -450 -450 -550 ≥450 -450 ≥450 ≥550 -550 -650 250-350 250-350 250-350 350 10⁻² 3 Data / pred 500 100 200 300 400 1 0 0.3 M^W_{T2} [GeV] E_{T}^{miss} [GeV]

Summary for gluino-mediated stops

Interpretation with Simplified Models for gluino-mediated production:

Summary of direct stop limits

Interpretation with Simplified Models for direct production:

SUS-16-027 OS di-lepton stop search Search for direct stop pair production in di-lepton final states Three MT2 variables (II,bb and blbl) are used to control the top quark background and define the search regions **CMS** *Preliminary* 12.9 fb⁻¹ (13 TeV) L=12.9 fb ⁻¹ (13 TeV) **CMS** Preliminary $m_{\widetilde{\chi}_{i}^{0}}$ [GeV] upper limit on cross section [pb] $pp \to \widetilde{t}_{_1} \, \widetilde{t}_{_1}, \widetilde{t}_{_1} \to t \; \widetilde{\chi}_{_1}^0 \; \; \text{NLO+NLL exclusion}$ Events 600 $140 \text{ GeV} < M_{_{T2}}(II) < 240 \text{ GeV}$ 100 GeV < M_{τ2}(II) < 140 GeV $\blacksquare Observed \pm 1 \sigma_{theory}$ 10⁴ tt/single-t Expected ± 1 $\sigma_{\text{experiment}}$ tīΖ 500 10^{3} diboson/triboson 10 tīH/W, tZq DY 400 10² $\widetilde{t} \rightarrow t \widetilde{\chi}_1^0$ (650,1) Data 10 300 200 і. С **10**⁻¹ 10 100 95% 10^{-2} 2 6 8 12 0 3 5 7 9 11 4 10 100 200 300 600 700 800 900 400 500 signal region number $m_{\tilde{t}}$ [GeV]

sbottom analysis

Events

 Sbottom analysis is looking for direct pair production of sbottom, but also to stop decaying to charm quarks (compressed region).

SUS-16-008

Compressed: 4-body stop decays

• One soft lepton analysis (5 GeV < pt < 30 GeV) + a hard ISR jet</p>

95% CL upper limit on cross section [pb]

10

 10^{-1}

SUS-16-031

12.9 fb⁻¹ (13 TeV)

550

m(t) [GeV]

450

500

600

EW SUSY with photons

SUS-16-023

Number of interesting signatures with photons+MET in GMSB models

EW production: 1-lepton

SUS-16-026

- Dedicated search for WH production in SUSY decays
- Use single lepton and H(bb) decay
- Use cotransverse mass variable MCT $M_{CT}^2 = 2p_T^{b1}p_T^{b2}(1 + \cos\Delta\phi_{bb}),$
- Main backgrounds from W+jets and ttbar estimated using control regions

EW production: soft OS di-lepton search

- Two OS di-leptons (5 < pT < 30 GeV)
- Sensitive to EW SUSY with small mass splitting

03/10/2017

SUS-16-025

EW production: multileptons

- Multilepton analysis includes SS di-lepton (e,mu), 3-leptons (e,mu,up to two had tau) and 4-leptons (e,mu,had tau).
- Low backgrounds, WZ normalized to control sample.
- Several signal scenarios considered.

SUS-16-024

03/10/2017

Electroweaking pair production

28

OS di-lepton search

SUS-16-021

29

- Classic analysis where SUSY could results in an "edge"
- Some excitement from CMS run 1 result (and ATLAS run 1 on Z-excess)
- Flavor symmetric background estimated from emu sample

<u>Higgs decaying to two photons</u>

 Search for SUSY in events with Higgs decaying to two photons using razor variables.

03/10/2017

SUS-16-012

R-Parity violation

SUS-16-013

- Search in high multiplicity final states with zero or one reconstructed lepton
- Results interpreted in a model in which the gluino decays exclusively to tbs
- Use the variable Mj: sum of the masses of large radius jets

N _{lep}	<i>M</i> _J [GeV]	$N_{ m jet}$			
		4–5	6–7	8–9	≥ 10
0	500-800	CR	CR	SR	SR
	> 800	CR	CR	SR	SR
1	500-800	CR	SR	SR	
L	> 800	CR	SR	SR	

No significant excess is observed

Conclusions

- CMS has a broad susy program
 - Inclusive analyses
 - 3rd generation dedicated analyses
 - Electroweak production
 - RPV, etc
- Good sensitivity observed with only a limited amount of 2016 data
- No significant deviation from Standard Model observed so far
- Stay tuned for the results with full dataset

BACK UP

SLIDES

1-lepton stop: MT2W

Here is the definition of the M^W_{T2} variable designed to reconstruct tt events with a lost lepton: $M_{T2}^W = \min \left\{ m_y \text{ consistent with: } \begin{bmatrix} \vec{p}_1^T + \vec{p}_2^T = \vec{E}_T^{\text{miss}}, \ p_1^2 = 0, \ (p_1 + p_\ell)^2 = p_2^2 = M_W^2, \\ (p_1 + p_\ell + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2 \end{bmatrix} \right\}$ + The tt events with lost lepton exhibit endpoint at $m_v = m_t$, while the signal has long tail s = 8 TeV, fLdt = 19.5 fb⁻¹ Data/MC lost W (p₂) 25 GeV Preselection (c) 10 0.25 10¹ 0.20 Fraction 0.15 - tv2 (650/50) x1000 v from W (p₁) 0.10 10³ 0.05 10² W 0.00 10 100 200 300 b_1 MT (GeV) 100 150 200 250 300 350 400 450 500 Bai, Cheng, Gallicchio, Gu, arXiv:1203.4812 M^W_{To} [GeV]

EW SUSY with photons

OS di-lepton search

		ttbar-like	non-ttbar-like
	pred. FS	1374.4 ± 48.1	105.8 ± 10.9
mll < 91 CoV	pred. DY	13.5 ± 4.6	7.3 ± 2.5
mil < of Gev	pred. total	1387.9 ± 48.3	113.1 ± 11.2
	obs	1417	135
	pred. FS	2435.8 ± 72.2	208.3 ± 15.7
	pred. DY	7.6 ± 2.6	4.1 ± 1.4
IIII > IUI Gev	pred. total	2443.4 ± 72.3	212.4 ± 15.7
	obs	2347	285

Table 7: Predicted and observed results for the edge search in the four $m_{\ell\ell}$ versus *NLL* regions for 12.9 fb⁻¹ of data.

to an excess in the observed number of events compared to the SM background estimate of 2.0(1.1) σ local (global) standard deviations.

Figure 4: Overview of the results in the strong search shown in the $m_{\ell\ell}$ spectrum of the two leptons. The left plot shows the region with tt-like events while the right shows events which are classified as non-tt-like. The region left of the empty bin corresponds to the low mass region, the region right of it to high-mass.

03/10/2017

<u>Higgs decaying to two photons</u>

