# Low-energy supersymmetry facing LHC constraints

#### Emanuele A. Bagnaschi (DESY Hamburg)



Les Rencontres de Physique de la Vallée d'Aoste 2017 10 March 2017 La Thuile, Italy

## Introduction

| The Minimal | Supers | ymmetric | Standard | Model |
|-------------|--------|----------|----------|-------|
|-------------|--------|----------|----------|-------|

Chiral supermultiplets

| Name               | Symbol    | spin 0                                                                            | spin 1/2                                                                                                   | $(SU(3)_C, SU(2)_L, U(1)_Y)$               |
|--------------------|-----------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| squarks,quarks     | Q         | $(\tilde{u}_L, \tilde{d}_L)$                                                      | $(u_L, d_L)$                                                                                               | $(3, 2, \frac{1}{6})$                      |
| (×3 families)      | ū         | $\widetilde{u}_R^*$                                                               | $u_R^{\dagger}$                                                                                            | $\left(\overline{3},1,-\frac{2}{3}\right)$ |
|                    | ā         | $\widetilde{d}_R^*$                                                               | $d_R^\dagger$                                                                                              | $\left(\bar{3},1,\frac{1}{3}\right)$       |
| sleptons,leptons   | L         | $(\tilde{v}, \tilde{e}_L)$                                                        | $(v, e_L)$                                                                                                 | $(1,2,-\frac{1}{2})$                       |
| (×3 families)      | ē         | ${\widetilde e}_R^*$                                                              | $e_R^{\dagger}$                                                                                            | (1,1,1)                                    |
| Higgses, Higgsinos | $H_{\mu}$ | $(H^+_{\!\scriptscriptstyle {\cal U}},H^{\rm O}_{\!\scriptscriptstyle {\cal U}})$ | $(\widetilde{H}^+_{\!\scriptscriptstyle {\cal U}}, \widetilde{H}^{\rm O}_{\!\scriptscriptstyle {\cal U}})$ | $(1, 2, \frac{1}{2})$                      |
|                    | $H_d$     | $(H^{\rm O}_d,H^d)$                                                               | $(\widetilde{H}_d^{\rm O}, \widetilde{H}_d^-)$                                                             | $(1, 2, -\frac{1}{2})$                     |
|                    | G         | auge supermu                                                                      | ltiplets                                                                                                   |                                            |
| Name               |           | spin 1/2                                                                          | spin 1                                                                                                     | $(SU(3)_C, SU(2)_L, U(1)_Y)$               |
| gluino,gluon       |           | ĝ                                                                                 | g                                                                                                          | (8,1,0)                                    |
| winos, W bosons    |           | $\widetilde{W}^\pm$ $\widetilde{W}^{	extsf{0}}$                                   | $W^{\pm}$ $W^{0}$                                                                                          | (1,3,0)                                    |
| bino, B boson      |           | $\widetilde{B}^{O}$                                                               | $B^{0}$                                                                                                    | (1,1,0)                                    |

### The MSSM

► Superpotential  $W = h_e H_d L \bar{e} + h_d H_d Q \bar{d} + h_u Q H_u U^c - \mu H_u H_d$ 

Soft SUSY-breaking mass and interaction terms for MSSM scalars

$$\begin{split} \mathscr{L}_{\text{soft-breaking}} &= m_{H_{u}}^{2} H_{u}^{\dagger} H_{u} + m_{H_{d}}^{2} H_{d}^{\dagger} H_{d} + m_{Q}^{2} Q^{\dagger} Q + m_{L}^{2} L^{\dagger} L \\ &+ m_{u}^{2} \tilde{u}_{R}^{*} \tilde{u}_{R} + m_{d}^{2} \tilde{d}_{R}^{*} \tilde{d}_{R} + m_{e}^{2} \tilde{c}_{R}^{*} \tilde{e}_{R} \\ &+ \left( T_{e} H_{d} L \tilde{e}_{R}^{*} + T_{d} H_{d} Q \tilde{d}_{R}^{*} + T_{u} Q H_{u} \tilde{u}_{R}^{*} + B_{\mu} H_{u} H_{d} + h.c. \right) \end{split}$$

SUSY-soft-breaking gauginos masses

$$\mathscr{L}_G = \frac{1}{2} \left( M_1 \tilde{B} \tilde{B} + M_2 \tilde{W} \tilde{W} + M_3 \tilde{g} \tilde{g} \right) + h.c.$$

#### A few phenomenological features

- After EWSB, gauginos and higgsinos mix to form the neutralinos (χ<sup>0</sup><sub>1,2,3,4</sub>) and the charginos (χ<sup>±</sup><sub>1,2</sub>).
- Higgs sector is a two Higgs-doublet (2HDM) of type-II. Physical spectrum is composed of two neutral CP-even Higgs(h and H), one neutral CP-odd Higgs (A) and two charged Higgses (H<sup>±</sup>).
- The light Higgs mass is *predicted* in the MSSM. Tree level upper bound of m<sub>Z</sub>, however radiative corrections are very important and allow to reach the observable value.

## Patterns of soft SUSY-breaking masses

#### Unified models

- Assume a specific mechanism of soft SUSY-breaking.
- Impose universality conditions on the soft SUSY-breaking terms at some high scale, e.g. GUT scale.
- Example: CMSSM, NUHM1, mAMSB, ....



## Phenomenological scenario

- Do not impose a specific structure at the high scale, very large number of parameters.
- Consider "reasonable" assumptions based on current measurements.
- No new sources of CP-violation, no new sources of FCNC, first and second generation universality.
- phenomenological MSSMn (pMSSMn) where n is the number of parameters [hep-ph/9901246, hep-ph/0211331].

#### LHC constraints

 Intense campaign of searches for SUSY signatures both from ATLAS and CMS. See talks by F. Lacroix (CMS), T. Yamanaka (ATLAS) and F. Legger (ATLAS) for more information on the experimental searches.

| ATLAS SUSY Searches* - 95% CL Lower Limits     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                       |                                                                                                                                          |                                                                                                 | ATLAS Preliminary                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                            |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51                                             | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ε, μ, τ, γ                                                                                                                                            | r Jets                                                                                                                                   | E <sup>miss</sup> <sub>T</sub>                                                                  | ∫£ difte                                                                                             | ·1 Mass limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sqrt{s} = 7,1$                                                                                                            | TeV vr = 13 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | √s = 7, 8, 13 TeV<br>Reference                                                                                                                                                                                                                             |
| Indusive Searches                              | $\begin{array}{l} \label{eq:main_states} \begin{split} & \underline{MSUGRA(CMSSM)} \\ & \underline{v}_{1}^{1}, \underline{v}_{1} + \underline{v}_{1}^{2} \\ & \underline{s}_{2}^{1}, \underline{v}_{1} + \underline{v}_{1}^{2} \\ & \underline{s}_{2}^{1}, \underline{v}_{2} + \underline{v}_{1}^{2} \\ & \underline{s}_{2}^{1}, \underline{v}_{2} + \underline{v}_{1}^{2} \\ & \underline{s}_{2}^{1}, \underline{v}_{2} + \underline{v}_{1}^{2} \\ & \underline{c}_{2}^{1}, \underline{v}_{2} + \underline{v}_{2}^{2} \\ & \underline{CASB} \left( NLSP \right) \\ & \underline{CAM} \left( Ino(LSP) \\ & \underline{CAM} \left( Ino(LSP) \\ & \underline{CAM} \left( Ino(LSP) \\ & \underline{CAM} \left( Ino(Ino(LSP) \\ & \underline{CAM} \left( Ino(Ino(LSP) \right) \\ & \underline{CAM} \left( Ino(Ino(LSP) \\ & \underline{CAM} \left( Ino(Ino(LSP) \right) \\ & \underline{CAM} \left( Ino(LSP) \right) \\ & \underline{CAM} \left( Ino(LSP)$ | 0.3 r, µ/1.2 r<br>0<br>menojet<br>0<br>3 r, µ<br>2 r, µ(55)<br>1.2 r + 0.1<br>2 y<br>7<br>2 r, µ(2)<br>0                                              | 2-10 jets 3<br>2-6 jets<br>1-3 jets<br>2-6 jets<br>2-6 jets<br>4 jets<br>0-3 jets<br>1-0-2 jets<br>-<br>1-0-2 jets<br>2 jets<br>mono-jet | <sup>2</sup> Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                 | 20.3<br>12.3<br>12.3<br>12.3<br>12.2<br>12.2<br>12.2<br>22.3<br>20.3<br>12.3<br>20.3<br>20.3<br>20.3 | 2 000 Garr<br>2 000 Garr<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2 2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.85 TeV<br>1.25 TeV<br>1.82 TeV<br>1.7 TeV<br>1.7 TeV<br>1.7 TeV<br>2.0 Te<br>1.65 TeV<br>1.25 TeV<br>1.27 TeV<br>1.27 TeV | $\begin{array}{l} m(p_{1},\ldots,p_{2}) \\ m(p_{1}',\ldots,p_{2}) \\ m(p_{2}',\ldots,p_{2}) \\ $                                                                                                                                                                                                                                                                                                                                                                                                           | - 100 0000<br>XTULE CORE OF 914-019<br>1004.0777<br>XTULE CORE OF 914-019<br>XTULE CORE OF 914-017<br>XTULE CORE OF 914-027<br>XTULE CORE OF 914-027<br>100 00480<br>XTULE CORE OF 914-026<br>100 00480<br>XTULE CORE OF 914-066<br>150.03900<br>150.03900 |
| 3" gen                                         | $\begin{array}{c} \chi_2, \chi \rightarrow th \tilde{\chi}_1^0 \\ \chi_2, \chi \rightarrow t \tilde{\chi}_1^0 \\ \chi_2, \chi \rightarrow t \tilde{\chi}_1^0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0-1 4. µ<br>0-1 4. µ                                                                                                                             | 3.b<br>3.b                                                                                                                               | Yes<br>Yes<br>Yes                                                                               | 14.8<br>14.8<br>20.1                                                                                 | 2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.09 TeV<br>1.09 TeV<br>1.37 TeV                                                                                            | m(r <sup>2</sup> <sub>1</sub> )=0 GeV<br>m(r <sup>2</sup> <sub>1</sub> )=0 GeV<br>m(r <sup>2</sup> <sub>1</sub> )<300 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATLAG-CONF-2016-052<br>ATLAG-CONF-2016-052<br>1407-0600                                                                                                                                                                                                    |
| 31 <sup>4</sup> gen squarts<br>destiproduction | $\begin{array}{l} \dot{h}_1 \dot{h}_1, \dot{h}_2 \rightarrow b \dot{1}_1^0 \\ \dot{h}_1 \dot{h}_1, \dot{h}_2 \rightarrow b \dot{1}_1^0 \\ \dot{h}_1 \dot{h}_1, \dot{h}_2 \rightarrow b \dot{1}_1^0 \\ \dot{h}_1 \dot{h}_1, \dot{h}_1 \rightarrow b \dot{1}_1^0 \\ \dot{h}_1 \dot{h}_1, \dot{h}_1 \rightarrow b \dot{h}_1^0 \\ \dot{h}_1 \dot{h}_1, \dot{h}_1 \rightarrow b \dot{h}_1^0 \\ \dot{h}_1 \dot{h}_1 \dot{h}_1 \dot{h}_2 \dot{h}_2 \\ \dot{h}_2 \dot{h}_1 \dot{h}_2 \rightarrow b \dot{h}_1 + Z \\ \dot{h}_2 \dot{h}_1 \dot{h}_2 \rightarrow b \dot{h}_1 + Z \\ \dot{h}_2 \dot{h}_1 \dot{h}_2 \rightarrow b \dot{h}_1 + J \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>2 s, µ (55)<br>0-2 s, µ<br>0-2 s, µ<br>0<br>2 s, µ (Z)<br>3 s, µ (Z)<br>1 s, µ                                                                   | 2.b<br>1.b<br>1-2.b<br>0-2 jets/1-2<br>mono-jet<br>1.b<br>1.b<br>6 jets + 2.b                                                            | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                   | 3.2<br>13.2<br>4.7/13.3<br>4.7/13.3<br>3.2<br>20.3<br>13.3<br>20.3                                   | Her     Her <td></td> <td>ကျပို့ 1:00 GeV<br/>ကျပို့ 1:05 GeV ကျပို့ = ကျပို့ 1:00 GeV<br/>ကျပို့ - 2:00 ပို့ ကျပို _)-65 GeV<br/>ကျပို့ - 1:04<br/>ကျပို _)-5 GeV<br/>ကျပို _)-5 GeV<br/>ကျပို _)-05 GeV<br/>ကျပို _)-05 GeV</td> <td>1666.08772<br/>ATLAS-DOIR-027<br/>106.31002, ATLAS-CONF-2016-077<br/>1566.08418, ATLAS-CONF-2016-077<br/>1566.08219<br/>1603.5222<br/>ATLAS-DOIR-0316-038<br/>1566.08416</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             | ကျပို့ 1:00 GeV<br>ကျပို့ 1:05 GeV ကျပို့ = ကျပို့ 1:00 GeV<br>ကျပို့ - 2:00 ပို့ ကျပို _)-65 GeV<br>ကျပို့ - 1:04<br>ကျပို _)-5 GeV<br>ကျပို _)-5 GeV<br>ကျပို _)-05 GeV<br>ကျပို _)-05 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1666.08772<br>ATLAS-DOIR-027<br>106.31002, ATLAS-CONF-2016-077<br>1566.08418, ATLAS-CONF-2016-077<br>1566.08219<br>1603.5222<br>ATLAS-DOIR-0316-038<br>1566.08416                                                                                          |
| EW<br>direct                                   | $\begin{array}{l} \hat{\ell}_{L,R}\hat{\ell}_{L,R}, \hat{\ell} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 κ.μ<br>2 κ.μ<br>2 τ<br>3 κ.μ<br>2 3 κ.μ<br>τ/γγ<br>κ.μ.γ<br>4 κ.μ<br>1 π.μ + γ<br>2 γ                                                               | 0<br>0<br>0-2 jets<br>0-2 h<br>0<br>-                                                                                                    | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                   | 20.3<br>12.3<br>14.8<br>12.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                                 | 1     Sector GeV       1     Sec GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ಸರ್()<br>ಗಾಗ<br>ಸರ್()                                                                                                       | $\begin{split} m(\tilde{l}_1, d, d, d, v) & \\ & M(\tilde{l}_1, d, d, d, d) m(\tilde{l}_1) + m(\tilde{l}_1) $ | 1002 0014<br>ATLAS-COMF-2014-006<br>ATLAS-COMF-2014-000<br>ATLAS-COMF-2014-000<br>1002 0014-0012<br>1002 0014<br>1002 00640<br>1020 00640                                                                                                                  |
| Lorg-lived<br>particles                        | $\begin{array}{l} \text{Direct} \ \widehat{i}_{1}^{+}\widehat{i}_{1}^{+} \text{ prod.}, \ \text{long-load} \\ \text{Direct} \ \widehat{i}_{1}^{+}\widehat{i}_{1}^{-} \text{ prod.}, \ \text{long-load} \\ \text{Stable, integrad } \widehat{i}_{1}^{-}\text{Anderson} \\ \text{Stable } \ \widehat{i}_{1}^{-}\text{Redexon} \\ \text{Stable } \ \widehat{i}_{1}^{-}\text{Redexon} \\ \text{CMSB}, \ \widehat{i}_{1}^{-} \rightarrow i \widehat{i}_{1}^{-} \text{Redexon} \\ \text{CMSB}, \ \widehat{i}_{1}^{-} \rightarrow i \widehat{j}_{1}^{-} \text{Redexon} \\ \text{CMSB}, \ \widehat{i}_{1}^{-} \rightarrow i \widehat{j}_{2}^{-} \text{Redexon} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>(1)</sup> Disapp. t9<br><sup>(1)</sup> dEids trk<br>0<br>trk<br>dEids trk<br>dEids trk<br>(κ,μ) 1-2 μ<br>2 γ<br>displ. κε/κμ(<br>displ. vtx + js | k 1 jet<br>1-5 jets<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                       | Yes<br>Yes<br>Yes<br>Yes<br>Yes                                                                 | 20.3<br>18.4<br>27.9<br>3.2<br>19.1<br>20.3<br>20.3<br>20.3                                          | 1 270 GeV<br>405 GeV<br>4 50 GeV<br>4 50 GeV<br>4 507 GeV<br>4 40 GeV<br>1 1.0<br>1 1. | 1.50 TeV<br>1.57 TeV<br>TeV                                                                                                 | $\begin{split} m_{1}^{(1)}m_{1}^{(1)}m_{2}^{(1)}m_{2}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{(1)}m_{3}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12116 3475<br>1526 05322<br>1233 8458<br>1666 05322<br>1366 05329<br>1666 05320<br>1111 3766<br>1668 0562<br>1566 05682                                                                                                                                    |
| NH                                             | $\begin{split} & LFV  \rho p \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r εμ,ετ,μτ<br>2 ε,μ (55)<br>μμν 4 ε,μ<br>τ, 3 ε,μ+τ<br>0 4<br>1 ε,μ<br>1 ε,μ<br>0<br>2 ε,μ                                                            |                                                                                                                                          | Yes<br>Yes<br>Yes<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>is | 3.2<br>20.3<br>10.3<br>20.3<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>15.4<br>20.3                  | 5.<br>1. 453 GeV<br>2. 453 GeV<br>3. 453 GeV<br>45. 452 GeV<br>45. 515 GeV<br>45. 515 GeV<br>45. 515 GeV<br>45. 515 GeV<br>45. 644.9<br>6.444.9<br>1. 415 GeV<br>45. 644.9<br>1. 415 GeV<br>45. 644.9<br>1. 455 GeV<br>45. 645.9<br>1. 455 GeV                                                                                                                                                                                                                                   | 1.9 TeV<br>1.45 TeV<br>1.45 TeV<br>1.55 TeV<br>1.75 TeV<br>1.4 TeV<br>TeV                                                   | $\begin{split} & \mathcal{A}_{i_1}, \mathrm{d} (3, 1, A_{i_1(i_1(i_1))} \mathrm{d} (3, 2)) \\ & \mathrm{stripset}(g_i, \mathrm{stripset}(g_i, \mathrm{stripset}(g_i))) \\ & \mathrm{stripset}(g_i), \mathrm{stripset}(g_i, \mathrm{stripset}(g_i)) \\ & \mathrm{stripset}(g_i), \mathrm{stripset}(g_i), \mathrm{stripset}(g_i), \mathrm{stripset}(g_i)) \\ & \mathrm{stripset}(g_i), \mathrm{stripset}(g_i), \mathrm{stripset}(g_i), \mathrm{stripset}(g_i)) \\ & \mathrm{stripset}(g_i), \mathrm{stripset}(g$                                                                                                                                                                                                                                                                                                                                           | 1407.08779<br>1408.006<br>ATLAS-CORF-3914-075<br>1405.008<br>ATLAS-CORF-3914-07<br>ATLAS-CORF-3914-07<br>ATLAS-CORF-3914-07<br>ATLAS-CORF-3914-08<br>ATLAS-CORF-3914-08<br>ATLAS-CORF-3914-08<br>ATLAS-CORF-3914-08                                        |
| Other                                          | Scalar charm, $2 \rightarrow c \hat{\pi}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                     | 2.0                                                                                                                                      | Yes                                                                                             | 20.3                                                                                                 | a Stū GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | m(l <sup>2</sup> )-200 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1501.01325                                                                                                                                                                                                                                                 |
|                                                | "Only a selection of it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | re available n                                                                                                                                        | nass limits                                                                                                                              | on n                                                                                            | ow 1                                                                                                 | D-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                           | Mass scale [Te\/]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                            |

Low-energy supersymmetry facing LHC constraints

### LHC constraints

- A proper interpretation of current results in terms of MSSM parameter space depends strongly on the hierarchy of masses between the different SUSY particles.
- Different hierarchies implies different decay rate. Some configuration results in difficult experimentally accessible region (e.g. compressed regions).
- Assumptions that results in the near degeneracy of some states (e.g. first two generation squarks), strongly influence the constraints.
- If using a simplified model, dependence on its assumptions (BRs, mass of the other sparticles etc.).



[CMS-PAS-SUS-16-05]

### LHC constraints

- A proper interpretation of current results in terms of MSSM parameter space depends strongly on the hierarchy of masses between the different SUSY particles.
- Different hierarchies implies different decay rate. Some configuration results in difficult experimentally accessible region (e.g. compressed regions).
- Assumptions that results in the near degeneracy of some states (e.g. first two generation squarks), strongly influence the constraints.
- If using a simplified model, dependence on its assumptions (BRs, mass of the other sparticles etc.).





## LHC constraints ... but not only

#### Indirect measurements

- (g−2)<sub>μ</sub>. 3.4σ discrepancy may be explained with O(100) GeV smuons.
- $M_W, M_Z, M_h$  and EWPO.
- Flavor physics observables  $(B_s \rightarrow \mu \mu, b \rightarrow s\gamma, \ldots)$ .

#### Dark matter

- Relic density constraint especially important, if assuming that the  $\hat{\chi}_1^{\circ}$  is the only DM component.
- Strong constraint from direct detection experiment; complementary to the LHC searches.
- Indirect detection constraints can be important according to the neutralino composition, however large uncertainties in the modeling of the signal.



## Where is SUSY now?

#### Global likelihood studies

- Define a simplified model based on reasonable assumptions and a minor number of free parameters.
- Use of the available collider data, electro-weak precision observables and DM constraint to fit the best value and the likelihood profile of the model parameters.
- Effectively implement interplay between different searches (e.g. collider vs direct detection for DM).



#### MSSM scenarios



 $\underbrace{\frac{M_1, M_2, M_3}{m_{\tilde{q}_{1,2}}, m_{\tilde{q}_3}, m_{\tilde{f}}}}_{A}}_{M_A, \tan\beta, \mu}$ 

pMSSM19

$$\begin{array}{c} M_{1}, M_{2}, M_{3} \\ m_{\tilde{Q}_{1,2}}, m_{\tilde{Q}_{3}}, m_{\tilde{u}_{R}, \tilde{c}_{R}}, m_{\tilde{d}_{R}, \tilde{s}_{R}}, m_{\tilde{t}_{R}}, m_{\tilde{b}_{R}} \\ m_{\tilde{L}_{1,2}}, m_{\tilde{L}_{3}}, m_{e,\tilde{\mu}}, m_{\tilde{\tau}} \\ A_{t}, A_{b}, A_{\tau} \\ M_{A}, \tan \beta, \mu \end{array}$$

[1504.03260],[1508.06608,1605.09502, 1608.05379]

## GUT models

#### **CMSSM**



We have several different mechanism at play.

1.  $\tilde{\tau}$ -coannihilation



- Leading mechanism when the mass difference between the τ̃ and the χ̃<sup>1</sup><sub>1</sub> is of the order of a few GeV.
- $\hat{\chi}_1^0$  is Bino-like.
- Also  $\tilde{\tau} \tilde{\tau}$  annihilation important in this scenario.

GUT models

#### **CMSSM**



#### **CMSSM**



We have several different mechanism at play.

3. Focus point.



- Region where RGEs have focussing properties.
- We have that  $\mu \approx M_1$ , sizable Higgsino component of the  $\hat{\chi}_1^{\circ}$ .

GUT models

#### SU(5) boundary conditions





Phenomenological models

## Phenomenological models

#### pMSSM10 mass spectrum



- Poor determination of the mass of colored sparticles (only lower bound from LHC searches).
- Larger freedom allow to fulfill the  $(g-2)_{\mu}$  constraint without being in tension with the LHC searches.
- Improved fit with respect to the GUT models.



| Model   | $\chi^2/n_{\rm dof}$ | p-value |
|---------|----------------------|---------|
| CMSSM   | 32.8/24              | 11 %    |
| NUHM1   | 31.1/23              | 12 %    |
| NUHM2   | 30.3/22              | 11 %    |
| pMSSM10 | 20.5/18              | 31 %    |

- $3.5\sigma$  discrepancy between the SM  $(g-2)_{\mu}$  value and the measured one.
- In CMSSM,NUHM1 and NUHM2 there is a tension between the  $(g-2)_{\mu}$ and LHC constraints from direct searches, due the universality relations.
- In the pMSSM10 we are able to fit perfectly the  $(g-2)_{\mu}$ .
- Impact of LHC8<sub>FWK</sub> constraint limited.

Low-energy supersymmetry facing LHC constraints



Phenomenological models

## Interplay between collider and direct detection



Low-energy supersymmetry facing LHC constraints

## pMSSM19

- ATLAS pMSSM19 scan vs 7/8 TeV searches.
- Flat-prior random-sampling. Upper and lower bound chosen to maximize coverage of the parameter space accessible to the LHC [1508.06608].





SUSY-AI : use results from the ATLAS scan to implement the constraints from the available searches using machine-learning method [1605.02797].

## pMSSM19

- Exclusion power of the 13 TeV data from Barr et al [1605.09502].
- Use the models previously found to be allowed by the ATLAS study.
- Exclude a further 15.7% model points from the set that survived from Run 1 searches.



 Barr et al [1608.05379], complementarity with DM.



### Conclusions

- Completely covering Supersymmetry at LHC is difficult, even for the simplest case of the MSSM.
- Strong dependence of the spectrum (and of the signatures) on the theoretical assumptions of the scenario.
- ► GUT models unable to fit (g-2)<sub>µ</sub> anymore due to the LHC constraints on sparticle production.
- Interesting complementarity with DM direct-detection searches.
- Countless other studies not covered in this talk.

## Appendix

### Higgs mechanism in the MSSM

► Tree level Higgs scalar potential  $(m_u^2 = m_{H_u}^2 + |\mu|^2 \text{ and } m_d^2 = m_{H_d}^2 + |\mu|^2)$ 

$$V_{0} = m_{\mu}^{2} \left| H_{\mu}^{0} \right|^{2} + m_{d}^{2} \left| H_{d}^{0} \right|^{2} + B_{\mu} (H_{d}^{0} H_{\mu}^{0} + \text{h.c.}) + \frac{g^{2} + g'^{2}}{8} \left( \left| H_{d}^{0} \right|^{2} - \left| H_{\mu}^{0} \right|^{2} \right)^{2}$$

- The two Higgs doublet are supposed to acquire a v.e.v. different from zero
- Decomposition of the fields

$$H_{\mu}^{0} = \frac{1}{\sqrt{2}} \left( v_{\mu} + S_{\mu} + iP_{\mu} \right), \quad H_{d}^{0} = \frac{1}{\sqrt{2}} \left( v_{d} + S_{d} + iP_{d} \right)$$

Diagonalization of the pseudoscalar mass matrix (rotation angle β) give a would-be Goldstone boson eaten by the Z and a pseudoscalar state with a mass

$$m_A^2 = \frac{B_\mu}{\cos\beta\sin\beta}$$

- Same diagonalization angle for the charged Higgs matrix
- Pseudoscalar couplings to quarks and leptons are given by

$$g_{Auu} = \cot \beta \frac{m_u}{v}, \quad g_{Add,Aee} = \tan \beta \frac{m_{d,e}}{v}$$

### Higgs mechanism in the MSSM

• Mass matrix for the scalar sector  $(m_{\mu}^2 \text{ and } m_d^2 \text{ replaced by a combination of } m_A^2 \text{ and } \tan \beta)$ 

$$\mathcal{M}_{0} = \begin{pmatrix} m_{A}^{2} \sin^{2}\beta + m_{Z}^{2} \cos^{2}\beta & -(m_{A}^{2} + m_{Z}^{2}) \sin\beta\cos\beta \\ -(m_{A}^{2} + m_{Z}^{2}) \sin\beta\cos\beta & m_{A}^{2} \cos^{2}\beta + m_{Z}^{2} \sin^{2}\beta \end{pmatrix}$$

► Diagonalization angle  $\alpha$ .  $m_b^2 \le m_Z^2 \cos^2(2\beta)$  at tree level.

$$\tan 2\alpha = \left(\frac{m_A^2 + m_Z^2}{m_A^2 - m_Z^2}\right) \tan 2\beta$$

$$m_{b,H} = \frac{1}{2} \left( m_A^2 + m_Z^2 \mp \sqrt{(m_A^2 - m_Z^2)^2 + 4m_Z^2 m_A^2 \sin^2(2\beta)} \right)$$

Scalar coupling to the gauge bosons: g<sub>bVV</sub> = <sup>2m<sup>2</sup><sub>V</sub></sup>/<sub>v</sub> sin(β−α), g<sub>HVV</sub> = <sup>2m<sup>2</sup><sub>V</sub></sup>/<sub>v</sub> cos(β−α)
Scalar couplings to the quarks and leptons are given by

$$g_{huu} = \frac{\cos \alpha}{\sin \beta} \frac{m_u}{v}, \quad g_{hdd,hee} = -\frac{\sin \alpha}{\cos \beta} \frac{m_{d,e}}{v}$$
$$g_{Huu} = \frac{\sin \alpha}{\sin \beta} \frac{m_u}{v}, \quad g_{Hdd,hee} = \frac{\cos \alpha}{\cos \beta} \frac{m_{d,e}}{v}$$

►

### The framework

- Frequentist fitting framework written in Python/Cython and C++.
- We use SLHA standard as an interface between the external codes that are used to compute the spectrum and the observables.
- The Multinest algorithm is used to sample the parameter space.

| Parameter             | Range       | Number of |
|-----------------------|-------------|-----------|
|                       | _           | segments  |
| M <sub>1</sub>        | (-1, 1) TeV | 2         |
| M <sub>2</sub>        | (0,4)TeV    | 2         |
| M <sub>3</sub>        | (-4,4) TeV  | 4         |
| $m_{\tilde{q}}$       | (0,4)TeV    | 2         |
| $m_{\tilde{q}_3}$     | (0,4)TeV    | 2         |
| mj                    | (0,2)TeV    | 1         |
| M <sub>A</sub>        | (0,4)TeV    | 2         |
| Â                     | (-5,5) TeV  | 1         |
| μ                     | (-5, 5) TeV | 1         |
| $\tan \beta$          | (1,60)      | 1         |
| Total number of boxes |             | 128       |



Spectrum generation SoftSUSY

Higgs sector and  $(g-2)_{\mu}$  FeynHiggs, Higgssignals, Higgsbounds

**B-Physics** 

SuFla, SuperISO

EW precision observables FeynWZ

Dark matter MicrOMEGAs, SSARD

## SU(5) GUT



SUSY-breaking terms.

- $(q_L, u_L^c, e_L^c)_i \in 10_i$
- $(\ell_L, d_L^c)_i \in \bar{\mathbf{5}}_i$
- $H_{u} \in \mathbf{5}_{i}, H_{u} \in \mathbf{\bar{5}}_{i}$
- Universal trilinear  $A_0$ .
- $\tan \beta$ .



## SU(5) GUT



- CMS simplified models, 100% BR  $\tilde{q} \rightarrow q \tilde{\chi}_1^{\circ}$ .
- $\tilde{u}_L$  and  $\tilde{d}_L$  decays on other hand mainly in  $\tilde{\chi}^{\pm} + q'$ .
- We implemented our own recasting of the analysis.

## SU(5) GUT



- CMS simplified models, 100% BR  $\tilde{q} \rightarrow q \tilde{\chi}_1^{\circ}$ .
- $\tilde{u}_L$  and  $\tilde{d}_L$  decays on other hand mainly in  $\hat{\chi}^{\pm} + q'$ .
- We implemented our own recasting of the analysis.

#### mAMSB



- SUSY breaking via loop-induced super-Weyl anomaly.
- Pure AMSB unrealistic (tachionic sleptons), add a term m<sub>0</sub>.
- Three parameters:  $m_0$ ,  $m_{3/2}$  and  $\tan \beta$ .
- Sign of μ is also free.



#### mAMSB



- SUSY breaking via loop-induced super-Weyl anomaly.
- Pure AMSB unrealistic (tachionic sleptons), add a term m<sub>0</sub>.
- Three parameters:  $m_0$ ,  $m_{3/2}$  and  $\tan \beta$ .
- Sign of μ is also free.



## pMSSM10 best fit point



- Heavy Higgses, squarks, gluinos are relatively unconstrained.
- Left-handed fermion decay chains evolve via  $\tilde{\chi}_1^{\pm}$  and  $\tilde{\chi}_2^{\circ}$ .
- Sleptons are at less than 1 TeV.



## Higgs physics



- pMSSM10 likelihood is very similar to the experimental value smeared by the theoretical uncertainty as given by FeynHiggs.
- ► Lower value of tan  $\beta$  are disfavored at the 68% CL by LHC8<sub>*EWK*</sub>,  $(g-2)_{\mu}$  and DM constraints
- The constraints interplay with the choice of a single soft SUSY-breaking mass-parameter for the sleptons.