

Latest results of the Double Chooz experiment

Anthony Onillon, APC laboratory on behalf of the Double Chooz Collaboration

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, March 6, 2017

Summary

- 1. Introduction: neutrino oscillation and reactor antineutrinos
- 2. Double Chooz experimental setup
- 3. Events selection and background
- 4. $sin^2(2\theta_{13})$ fit
- 5. Reactor flux and shape caracterization
- 6. Conclusion

Neutrino oscillation

The PMNS matrix

• By 2010: $\sin^2(2\theta_{13}) < 0.17$ at 90% CL (Chooz)

Solution Soluti Solution Solution Solution Solution Solution Solution Solut

Somplementary to the long baseline oscillation experiments

- mass hierarchy determination
- Precise θ_{13} measurement: \dashv CP violation measurement
 - Understanding PMNS matrix

Commercial nuclear reactor

- Pressurized Water Reactor ⇒ Thermal power from ²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu (> 99.7% of total fission)
- Intense flux: ~5.10²⁰ $\bar{\nu}_e$ /s for a typical 900 MWth reactor

$\overline{\mathbf{v}}_e$ detection

Inverse beta decay reaction (IBD) in liquid scintillator doped with gadolinium:

$$\overline{v}_e + p \rightarrow e^+ + n$$

Energie threshold: 1.8 MeV $\langle \sigma \rangle \sim 10^{-43} cm^2$

 $\overline{\nu}_e$ signature: spatial and temporal correlation between a prompt and a delayed signal

• **Prompt signal:** ionisation induced by positron + annihilation γ 's

 $\Rightarrow E_{vis} = E_{\bar{\nu}_e} - 0.782 \text{ MeV}$

• **Delayed signal:** γ 's from neutron capture on Gd or/and H

Gd: 8 MeV / τ~ 30 μs
H: 2.2 MeV / τ~ 200 μs

Disappearance experiment ($\bar{\nu}_e \rightarrow \bar{\nu}_e$) \Rightarrow Direct measurement of θ_{13} from energy dependent deficit

Non oscillation probability:

$$P_{\overline{\nu}_e \to \overline{\nu}_e}(L, E) \simeq 1 - \frac{\sin^2(2\theta_{13})}{\sin^2} \sin^2\left(1.267 \frac{\Delta m_{13}^2 (eV^2) L(m)}{E(MeV)}\right) \qquad (two flavours approximation)$$

⇒ Systematics uncertainties highly suppressed in multiple detectors configuration at different baselines with identical detectors

Experimental setup of Double Chooz

 \Rightarrow ND is almost a perfect monitor of FD

Double Chooz detectors

Detector design

Experimental concept to use two identical detectors

- 4 layers structure (v-Target, γ -Catcher, Buffer and IV)
- ♦ stable Gd loaded liquid scintillator developed (same batch for both detectors)

Two types of background expected

• Accidental coincidence:

γ (radioactivity from materials, PMTs, rock)

Neutrons (from cosmic μ spallation) captured on Gd/H or γ like prompt fake signal in case of H

Prompt mimic

Two types of background expected

• Accidental coincidence:

γ (radioactivity from materials, PMTs, rock)

• Fast neutron:

Neutrons (from cosmic µ spallation) gives recoil protons (low energy) Neutrons (from cosmic μ spallation) captured on Gd/H or γ like prompt fake signal in case of H

Neutrons (from cosmic μ spallation) captured on Gd/H or γ like prompt fake signal in case of H

Prompt mimic

Two types of background expected

• Accidental coincidence:

γ (radioactivity from materials, PMTs, rock)

• Fast neutron:

Neutrons (from cosmic µ spallation) gives recoil protons (low energy)

• Stopping muon:

Cosmic $\boldsymbol{\mu}$ entering from the chimney

Neutrons (from cosmic μ spallation) captured on Gd/H or γ like prompt fake signal in case of H

Neutrons (from cosmic μ spallation) captured on Gd/H or γ like prompt fake signal in case of H

Michel electrons (µ decay)

Prompt mimic

Two types of background expected

• Accidental coincidence:

γ (radioactivity from materials, PMTs, rock)

• Fast neutron:

Neutrons (from cosmic µ spallation) gives recoil protons (low energy)

• Stopping muon:

Cosmic μ entering from the chimney

• Cosmogenic β-n emitter:

 e^{-} from ⁹Li/⁸He β + n decays

Neutrons (from cosmic μ spallation) captured on Gd/H or γ like prompt fake signal in case of H

Neutrons (from cosmic μ spallation) captured on Gd/H or γ like prompt fake signal in case of H

Michel electrons (µ decay)

Neutrons from ${}^{9}Li/{}^{8}He \beta + n decays$ captured on Gd/H

correlated

Prompt mimic

Double Chooz milestone

2011-2015: 1st phase of DC, data taking with only the far detector

• $\sin^2(2\theta_{13})$ measurement: comparison of FD data with a prediction of the expected non-oscillated \overline{v}_e flux \Rightarrow Flux systematics dominated ($\sigma_{flux} \sim 1.7\%$)

2015: 2nd phase of Double Chooz, data taking in a multi-detector configuration

- 1st analysis released at the Moriond 2016 conference (mars. 2016) 9 months
- 2nd analysis released at a Cern seminar (sept. 2016) 15 months ⇒ This presentation

Very similar response for both the far and near detectors

 $\stackrel{\scriptstyle \ensuremath{\triangleleft}}{\hookrightarrow}$ ²⁵²Cf calibration campaign: relative response linearity \leq 0.3% within [1,10] MeV

Sood agreement of events distribution after background rejection

- Detector response variation with time $\lesssim 1\%/year$
- Stable scintillator: Gd-fraction unchanged since
 > 5 years (within 0.2%)

8/20

IBD selection

IBD[Gd+H] IBD[Gd] mean: -9.81 10⁻³ / z mean: 3.33 10⁻² mean: -1.50 10⁻² / z mean: 5.89 10⁻² Z (m) (m) z 30 22 20 25 1.5 1.5 18 **New Analysis** 16 20 14 0.5 0.5 12 0 15 10 -0.5 -0.5 10 -1 -1 -1.5 -1.5 -2 -2 -2.5L -2.5 -2.5 -1.5 -1 -0.5 -0.5 0 0.5 1 1.5 -1 0 0.5 1 1.5 2.5 Y (m) Detection volume: ~30t Detection volume: ~8t ν -Target + γ -Catcher ν -Target

- Simultaneous selection of events with neutron capture on Gd and H ⇒ Open delayed energy window
- New IBD[Gd+H]: Immune to liquide exchange between ν-Target and γ-Catcher (γ-Catcher slighthly contaminated with Gd in the Near detector)
 - Increased statistic: $\sim 3x$

IBD selection

IBD[Gd+H] selection

Accidental Background dominant \Rightarrow IBD selection through multivariate analysis: Artificial Neural Network (ANN)

Cut on ANN based on the 3 uncorrelated variables:
 ΔR, ΔT, delayed energy

Strain on MC with accidental background sample

More than factor 10 reduction of accidental background

Prompt Energy	1 - 20 MeV	
Delayed Energy	1.3 - 10 MeV	
Δt	0.5 - 800 μs	
ΔR	< 1.2 m	
Isolation windows (prompt)	[-800 <i>,</i> +900] μs	
Δt after a muon	> 1250 µs	

Before ANN

After ANN

Prompt signal before and after the ANN (Near detector)

- Backgrounds rejected with multiple vetoes
 - ✤ negligible stopping-µ contamination after rejection (both detectors)
- Remaining contamination

		FD	ND
Signal/BG		~11	~22
σ (BG)/Signal –	(data)	0.5%	0.3%
	(after fit)	0.2%	0.1%

 \Rightarrow Additionnal constraint after $\sin^2(2\theta_{13})$ fit

Comparison of unoscillated flux prediction with data

(background substracted)

Near detector IBD[Gd+H]

• ~900 events per day (σ_{stat} ~0.2%)

Far detector IBD[Gd+H]

• ~130 events per day ($\sigma_{stat} \sim 0.4\%$)

\Rightarrow ND is almost a perfect monitor of FD-II

 \Leftrightarrow Discrenpancies induced by the time exposure

1 reactor on

$sin^2(2\theta_{13})$ fit

Data-to-MC fit (Rate + Shape):

Simultaneous comparison of FD-I, FD-II and ND data to non-oscillated flux predictions

$$\chi^{2}(\theta_{13}, R_{Li}^{d}) = (\overline{Data} - \overline{Pred})M_{cov}^{-1}(\overline{Data} - \overline{Pred})^{T} + \text{Penalty Pulls} + \text{Reactor off}$$

- BG rate and shape estimated by the data but in fit:
 Li rate unconstrained
 - FN rate and shape parameters treated as pulls
- BG constraint from 7.24 days with both reactor off (FD-I)

 Correlation of systematic uncertainties (flux predictions, detection, energy response, backgrounds) are taken into account

$sin^2(2\theta_{13})$ fit

Data-to-MC fit (Rate + Shape):

Ratio of the data to the unoscillated flux prediction

$sin^2(2\theta_{13}) = 0.119 \pm 0.016$ with $\chi^2/dof = ~236.2/114$

(marginalised over $\Delta m^2 = (2.44 \pm 0.09) eV^2$ — Parke et al. arXiv:1601.07464)

- High χ^2 /dof induced by the distortion between the MC and the data
- Crosscheck with a data-to-data fit (insensitive to the distorsion): $\sin^2(2\theta_{13}) = 0.123 \pm 0.023 (\chi^2/dof = 10.6/38)$

Systematics overview

- Detection and background uncertainties suppressed to per-mille level by analysis improvements
- Detection systematic dominated by the proton number uncertainty
- Reactor flux uncertainty dominant in last single detector analysis (1.7%)

Solution Solution Solution Setween FDI/FDII (~62% of uncertainties suppressed)

- almost maximal suppression between ND/FDII (isoflux condition):

(~92% of uncertainties suppressed)

$sin^2(2\theta_{13})$ sensitivity projection

- $sin^2(2\theta_{13})$ uncertainty dominated by the proton number uncertainty
- Blue line: assumption on the proton number uncertainty ($\sigma_{Np} = 0.1\%$)
 - > Potential room for improvement of DC sensitivity with a best proton number estimate (work in progress)

Summary of θ_{13} measurement

17/20

 $\sin^2 2\theta_{13}$

 $\sin^2 2\theta_{13}$

The spectral distortion

- ⇒ Consistent distortion between all experiments: dominated by flux inaccuracies modelling
 - SLack of knowledge on the reactor flux prediction: experimental data more precise than the prediction
- Better understanding and characterization of the distortion can be achieved with:
 - ♦ Very short baseline experiments at research reactors (²³⁵U spectrum measurement)
 - Study of the distortion with time (i.e. fuel inventory) with commercial reactors

Reactor IBD mean cross-section per fission

$$\langle \sigma_f \rangle = \frac{n_V}{N_p \times \epsilon} \times \frac{1}{\sum_{p=B1,B2} \frac{\langle P_{th} \rangle_p}{\langle E_f \rangle_p \times 4\pi R_p^2}}$$

 n_{V} : IBD rate corrected for θ_{13} oscillation ϵ : detector efficiency R: reactor-detector distance $\langle P_{th} \rangle$: mean reactor thermal power $\langle E_{f} \rangle$: mean energy released per fission

- DYB & B4 converted to DC fuel inventory (direct comparison)
- Higher uncertainties for FD-I and FD-II induced by the statistic and the θ₁₃ correction
- Precision limit from reactor thermal power uncertainty: $\sigma_{P_{th}} \sim 0.5\%$

Near detector: $\langle \sigma_f \rangle^{DC} = (5.64 \pm 0.06) \times 10^{-43} \text{ cm}^2/\text{fission}$

 \Rightarrow World most precise reactor normalization - Relative error: 1.1%

Conclusion

- Double taking data with both detectors since beginning of 2015
- New analysis: IBD[Gd+H]

 \Rightarrow Immune to γ-Catcher contamination with Gd in the Near detector / Improved statistic: \sim 3x

 \clubsuit New measurement of $\sin^2(2\theta_{13})$ based on a rate+shape fit

 $\sin^2(2\theta_{13}) = 0.119 \pm 0.016 \ (\chi^2/ndf = 236.2/114)$

- \Rightarrow Strong reduction of flux systematic and statistic
- ⇒ Uncertainty dominated by proton number uncertainty / work in progress for an improvement
- Precise characterization of the reactor IBD rate and shape
- Other Double Chooz analysis
 - Cosmic-muon characterization (JCAP02 (2017) 017)
 - Muon capture (PRC 93 (2016) 054608)
 - Ortho-positronium (JHEP 10 (2014) 032)
 - Background studies (PRD 87 (2013) 11102(R))
 - Lorentz violation (PRD 86 (2012) 112009)
 - Neutrino directionality
 - Sterile neutrino

Thank you for your attention!

The Double Chooz collaboration

Spokesperson H. De Kerret

Projet Manager Ch. Veyssière

Web Site: www.doublechooz.org

\sim 150 physicists (35 institutions)

Backup

Data-to-Data fit (Rate + Shape):

 $sin^2(2\theta_{13}) = 0.123 \pm 0.023$ with $\chi^2/ndf = 10.6/38$

 \Rightarrow Good agreement of Data-to-MC fit and Data-to-Data fit