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Neutrino oscillation
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The PMNS matrix

cij = cos(ij)
sij = sin(ij)

 By 2010: 𝐬𝐢𝐧𝟐 𝟐𝟏𝟑 < 𝟎. 𝟏𝟕 at 𝟗𝟎% 𝐂𝐋 (Chooz)
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 New generation of reactor experiments with unprecedented sensitivity (multi-detector concept)

  να =  

𝑖

𝑈∗
𝛼𝑖   ν𝑖

 Complementary to the long baseline oscillation experiments

• mass hierarchy determination
• CP violation measurement
• Understanding PMNS matrix

 Precise 13 measurement:  

Daya Bay, Double Chooz, RENO



Reactor antineutrino and signal

 ν𝒆 detection

Inverse beta decay reaction (IBD) in 
liquid scintillator doped with gadolinium:

 𝒆 + 𝒑 → 𝒆+ + 𝒏

Energie threshold: 1.8 MeV
σ ~ 10−43cm2

 𝛎𝐞 signature: spatial and temporal
correlation between a prompt and a
delayed signal

 Prompt signal: ionisation induced by positron + annihilation ’s

 Delayed signal:  ’s from neutron capture on Gd or/and H

 𝐄𝐯𝐢𝐬 = 𝐄 𝛎𝐞
− 𝟎.𝟕𝟖𝟐 𝐌𝐞𝐕
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Phys. Rev. C 83, 054615

IBD prompt 
reactor 

spectrum

• Gd:    8 MeV / 𝝉~ 30 µs 

• H:   2.2 MeV / 𝝉~ 200 µs 

Reactor antineutrinos 

 Intense flux: ~5.1020  𝜈𝑒/s for a typical 900 MWth reactor

Commercial nuclear reactor

 Pressurized Water Reactor ⇒ Thermal power from 235U, 239Pu, 238U, 241Pu (> 99.7% of total fission) 



Measurement of 𝛉𝟏𝟑

Disappearance experiment ( 𝛎𝐞 →  𝛎𝐞) ⇒ Direct measurement of θ13 from energy dependent deficit

(two flavours
approximation)

𝑃 𝝂𝑒→ 𝝂𝑒
𝐿, 𝐸 ≃ 1 − 𝐬𝐢𝐧𝟐 𝟐𝜽𝟏𝟑 sin2 1.267

∆𝑚13 eV2 L(m)

𝐸(MeV)

2

Non oscillation probability:

 Systematics uncertainties highly suppressed in multiple detectors configuration at different baselines with 
identical detectors

𝐬𝐢𝐧𝟐 𝟐𝜽𝟏𝟑

𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟐
Near detector
(ND)

Far detector
(FD)
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 No ‘matter effet’ and no CP dependency

 Rate deficit and shape distortion 
between a Near and a Far detector

𝜟𝒎𝟏𝟑
𝟐 /𝑬

𝐄𝛎 = 𝟑 𝐌𝐞𝐕



Near Detector
Far Detector

2 N4-PWR
2x4.25 GWth

~2.1021  𝛎𝐞/s

B1

B2

 <L>~400 m

 ~120 mwe

 <L>~1050 m

 ~300 mwe

Experimental setup of Double Chooz

Chooz-B nuclear power plant
French Ardennes
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Almost iso-flux site configuration
(Same proportion of B1/B2 flux in ND & FD)

⇒ ND is almost a perfect monitor of FD 



Detector design

Outer Veto: plastic scintillator strips

𝝂-Target: liquid scintillator doped with 1 g/l of Gd (10.3 m3)

-Catcher: liquid scintillator (22.3 m3)

Buffer:

Inner Veto:

Shielding: ~15cm steel shielding (FD) / 1m water (ND) 

Double Chooz detectors

- mineral oil (110 m3)
- 390 PMTs (10 inches)

liquid scintillator (90m3) / 78 PMTs (8 inches)

Experimental concept to use two identical detectors

 4 layers structure (ν-Target, -Catcher, Buffer and IV)

 stable Gd loaded liquid scintillator developed (same 
batch for both detectors)
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Inner 
detector

Buffer

Target- Catcher

ND

7 m



Two types of background expected

Background
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Prompt mimic

 Accidental coincidence:

Delayed mimic

γ (radioactivity from
materials, PMTs, rock)

n



Neutrons (from cosmic µ spallation)
captured on Gd/H or γ like prompt
fake signal in case of H

n

n
capture





Background
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

Neutrons (from cosmic µ spallation)
captured on Gd/H or γ like prompt
fake signal in case of H

Neutrons (from cosmic µ
spallation) gives recoil
protons (low energy)

 Fast neutron:

Neutrons (from cosmic µ spallation)
captured on Gd/H or γ like prompt
fake signal in case of H

Two types of background expected



Background
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Prompt mimic

 Accidental coincidence:

Delayed mimic

γ (radioactivity from
materials, PMTs, rock)

co
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loss

e-

from 𝛍 𝐝𝐞𝐜𝐚𝐲



Neutrons (from cosmic µ spallation)
captured on Gd/H or γ like prompt
fake signal in case of H

 Stopping muon:

Cosmic µ entering from the
chimney

Michel electrons (µ decay)

 Fast neutron:

Two types of background expected



Neutrons (from cosmic µ
spallation) gives recoil
protons (low energy)

Neutrons (from cosmic µ spallation)
captured on Gd/H or γ like prompt
fake signal in case of H



Background

6/20
Prompt mimic

 Accidental coincidence:

Delayed mimic

γ (radioactivity from
materials, PMTs, rock)

 Fast neutron:

 Stopping muon:

Cosmic µ entering from the
chimney

Michel electrons (µ decay)

e- from 9Li/8He β + n decays Neutrons from 9Li/8He β + n decays
captured on Gd/H

 Cosmogenic β-n emitter:

co
rr

e
la

te
d

9Li , 8He

12C

e-,n



Neutrons (from cosmic µ spallation)
captured on Gd/H or γ like prompt
fake signal in case of H

Two types of background expected



Neutrons (from cosmic µ
spallation) gives recoil
protons (low energy)

Neutrons (from cosmic µ spallation)
captured on Gd/H or γ like prompt
fake signal in case of H



Double Chooz milestone
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2011-2015: 1st phase of DC, data taking with only the far detector

New analysis based on n-H capture

Improved n-Gd analysis:
Observation of a spectral distortion
between the data and the
prediction

2015: 2nd phase of Double Chooz, data taking in a multi-detector configuration

 1st analysis released at the Moriond 2016 conference (mars. 2016) – 9 months

 2nd analysis released at a Cern seminar (sept. 2016) – 15 months ⇒ This presentation

1st phase  ⇒ FD-I
2nd phase ⇒ FD-II / ND

Detectors configurations
 sin2 2θ13 measurement: comparison of FD data with a prediction of the

expected non-oscillated  𝑒 flux ⇒ Flux systematics dominated (𝝈𝒇𝒍𝒖𝒙~𝟏. 𝟕%)

First 𝛉𝟏𝟑 fit based on reactor thermal 
power modulation –RRM– (rate only)

First n-Gd analysis (Rate + Shape fit): 
Indication of non-zero value of 𝜽𝟏𝟑



Detectors performance
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 Detector response variation with time ≲ 𝟏%/𝐲𝐞𝐚𝐫

 Stable scintillator: Gd-fraction unchanged since 
> 5 years (within 0.2%)

Near detector
Double Chooz Preliminary


252Cf calibration campaign: 
relative response linearity ≤ 0.3% within [1,10] MeV

 Very similar response for both the far and near detectors

Prompt IBD distribution

 Good agreement of events distribution after background 
rejection 

Double Chooz 
Preliminary

ND

FD-II

same source in 
both detectors 



IBD selection

IBD[Gd] IBD[Gd+H]

Detection volume: ~8t Detection volume: ~30t

𝝂-Target 𝝂-Target + -Catcher

 Simultaneous selection of events with neutron capture on Gd and H ⇒ Open delayed energy window 

 New IBD[Gd+H]: - Immune to liquide exchange between 𝜈-Target and -Catcher (-Catcher slighthly
contaminated with Gd in the Near detector) 

- Increased statistic: ~3x

New Analysis

Events 
collected 

• Near detector: ~200 k

• Far detector (since 2011): ~80 k
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⇒ Drawback: worse proton number estimation

remains our
challenge!

- 𝝂-Target: 𝜎𝑁𝑝
= 0.3%

- -Catcher: 𝜎𝑁𝑝
= 0.9%
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IBD selection

 Cut on ANN based on the 3 uncorrelated variables: 
ΔR, ΔT, delayed energy

 More than factor 10 reduction of accidental background

Before ANN After ANN

Prompt signal before and after the ANN (Near detector)

Accidental Background dominant ⇒ IBD selection through
multivariate analysis: Artificial Neural Network (ANN)

 Train on MC with accidental background sample

IBD[Gd+H] selection

Prompt Energy 1 - 20 MeV

Delayed Energy 1.3 - 10 MeV

Δt 0.5 - 800 μs

ΔR < 1.2 m

Isolation windows (prompt) [-800, +900] μs

Δt after a muon > 1250 μs

Double Chooz 
Preliminary

Double Chooz 
Preliminary



Background rejection

FD ND

Signal/BG ~11 ~22

𝜎(BG)/Signal
(data) 0.5% 0.3%

(after fit) 0.2% 0.1%

 Backgrounds rejected with multiple vetoes

⇒ Additionnal constraint after sin2 2θ13 fit 

• FD:   3.93 ± 0.01 d-1

• ND:  3.11 ± 0.04 d-1

• FD:     2.54 ± 0.07 d-1

• ND:  20.77 ± 0.43 d-1

• FD:    2.57 ± 0.60 d-1

• ND: 11.05 ± 1.95 d-1

 Remaining contamination

Acc:

FN:

Li:

11/20

 negligible stopping-µ contamination 
after rejection (both detectors)

⇒ Rejection Power estimation: 158x

Gd
H

Delayed signal



IBD candidates versus time

Comparison of unoscillated flux prediction with data
(background substracted)

⇒ ND is almost a perfect monitor of FD-II
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 Discrenpancies induced by the time exposure

Near detector IBD[Gd+H]

 ~900 events per day (𝜎𝑠𝑡𝑎𝑡~0.2%)

Far detector IBD[Gd+H]

 ~130 events per day (𝜎𝑠𝑡𝑎𝑡~0.4%)

FD-II 

ND 

1 reactor on

2 reactors on

FD-I 



 Simultaneous comparison of FD-I, FD-II and ND data to non-oscillated flux predictions

 Correlation of systematic uncertainties (flux predictions, detection, energy response, backgrounds) are 
taken into account

FD-I:FD-II FD-II:ND

FD-I
~40k IBDs

FD-II
~40k IBDs

ND
~200k IBDs

2 θ13, 𝑅𝐿𝑖
𝑑 = 𝐷𝑎𝑡𝑎 − 𝑃𝑟𝑒𝑑 𝑀𝑐𝑜𝑣

−1 𝐷𝑎𝑡𝑎 − 𝑃𝑟𝑒𝑑
𝑇

+ Penalty Pulls
+ Reactor off

• BG rate and shape estimated by the data but in fit:
- Li rate unconstrained
- FN rate and shape parameters treated as pulls

• BG constraint from 7.24 days with both reactor off (FD-I)
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Data-to-MC fit (Rate + Shape):

𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟑 fit 



𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟑 fit 

Data-to-MC fit (Rate + Shape):

Ratio of the data to the unoscillated flux prediction

FD-I FD-II ND

𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟑 = 𝟎. 𝟏𝟏𝟗 ± 𝟎. 𝟎𝟏𝟔 with  𝟐/𝐝𝐨𝐟 = 𝟐𝟑𝟔. 𝟐/𝟏𝟏𝟒

(marginalised over Δm2=(2.44±0.09)eV2 — Parke et al. arXiv:1601.07464)

 High 2/dof induced by the distortion between the MC and the data

14/20

 Crosscheck with a data-to-data fit (insensitive to the distorsion):  sin2 2θ13 = 0.123 ± 0.023 (2/𝑑𝑜𝑓 = 10.6/38)



Systematics overview

 Multiple detector: - partial suppression between FDI/FDII (~62% of uncertainties suppressed)

DC-IV
@MoriondDC-I DC-II DC-III

DC-IV
@Cern
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 Reactor flux uncertainty dominant in last single detector analysis (1.7%)

- almost maximal suppression between ND/FDII (isoflux condition): 
(~92% of uncertainties suppressed)

 Detection and background uncertainties suppressed to per-mille level by analysis improvements

FD only FD+ND

 Detection systematic dominated by the proton number uncertainty



𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟑 sensitivity projection

This 

results
3 years

running:

Dec. 2017

Double Chooz Preliminary

 Blue line: assumption on the proton number uncertainty (𝜎𝑁𝑝 = 0.1%)

 Potential room for improvement of DC sensitivity with a best proton number estimate (work in progress)
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Driven by proton 
number uncertainty

 sin2 2θ13 uncertainty dominated by the proton number uncertainty



Summary of 𝛉𝟏𝟑 measurement
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Last DC single detector result

 Double Chooz value is 2.2σ above Daya Bay (statistical
effect ruled out @6σ)

Allowed values of δCP vs 𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟑

Nova 2016 [PhysRevD.93.051104]

This result

 Precise 13 required for δCP measurement
Beam experiments ⇒ degeneracy between δCP and θ13



The spectral distortion

Reference antineutrino spectra:Double Chooz 
Preliminary • 235U, 239,241Pu: Huber

• 238U: Huber (Day Bay/RENO), Haag (DC)

(∆max: ≤ 2% within [1,7] MeV)

Reactor flux and shape characterization
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 Better understanding and characterization of the distortion can be achieved with: 

 Very short baseline experiments at research reactors (235U spectrum measurement)

 Study of the distortion with time (i.e. fuel inventory) with commercial reactors

⇒ Possible explanation in the treatment of 
the Z of the fission fragments in the 
conversion of integral 𝜷-spectrum? 
A. Hayes talk @ν-Phys2016

⇒ Consistent distortion between all experiments: dominated by flux inaccuracies modelling

Lack of knowledge on the reactor flux prediction: experimental data more precise than the prediction



Reactor flux and shape characterization

Reactor IBD mean cross-section per fission

Double Chooz Preliminary

Near detector: 𝝈𝒇
𝑫𝑪

= 𝟓.𝟔𝟒 ± 𝟎. 𝟎𝟔 × 𝟏𝟎−𝟒𝟑 𝐜𝐦𝟐/𝐟𝐢𝐬𝐬𝐢𝐨𝐧

⇒ World most precise reactor normalization - Relative error: 1.1%

 DYB & B4 converted to DC fuel inventory (direct
comparison)

𝜎𝑓 =
𝑛

𝑁𝑝 × 𝜖
×

1

 𝑝=𝐵1,𝐵2

𝑃𝑡ℎ 𝑝

𝐸𝑓 𝑝
× 4𝜋𝑅𝑝

2

𝑛:  IBD rate corrected for 𝜃13 oscillation 

𝜖: detector efficiency

𝑃𝑡ℎ : mean reactor thermal power

𝐸𝑓 : mean energy released per fission

Daya Bay: Chinese Physics C, 2017, 41(1): 13002-013002 

𝝈
𝝈𝒇

𝑩𝒖𝒈𝒆𝒚−𝟒
= 𝟏. 𝟒%

𝑅: reactor-detector distance

 Higher uncertainties for FD-I and FD-II induced
by the statistic and the θ13 correction

 Precision limit from reactor thermal power
uncertainty: 𝜎𝑃𝑡ℎ

~0.5%
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Conclusion
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 Double taking data with both detectors since beginning of 2015 

 New analysis: IBD[Gd+H]

 Immune to -Catcher contamination with Gd in the Near detector / Improved statistic: ~3x

𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟑 = 𝟎. 𝟏𝟏𝟗 ± 𝟎. 𝟎𝟏𝟔 (𝟐/𝐧𝐝𝐟 = 𝟐𝟑𝟔. 𝟐/𝟏𝟏𝟒)

 New measurement of sin2 2θ13 based on a rate+shape fit

⇒ Strong reduction of flux systematic and statistic

 Other Double Chooz analysis

⇒ Uncertainty dominated by proton number uncertainty / work in progress for an improvement 

Thank you for your attention!

• Cosmic-muon characterization (JCAP02 (2017) 017)
• Muon capture (PRC 93 (2016) 054608) 
• Ortho-positronium (JHEP 10 (2014) 032) 
• Background studies (PRD 87 (2013) 11102(R)) 
• Lorentz violation (PRD 86 (2012) 112009)
• Neutrino directionality
• Sterile neutrino

 Precise characterization of the reactor IBD rate and shape 
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Backup



Data-to-Data fit (Rate + Shape):

⇒ Good agreement of Data-to-MC fit and Data-to-Data fit

𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟑 = 𝟎. 𝟏𝟐𝟑 ± 𝟎. 𝟎𝟐𝟑 with 𝟐/𝐧𝐝𝐟 = 𝟏𝟎. 𝟔/𝟑𝟖

 FD-II directly compared to ND data (FDI excluded)

𝜔𝑖 scaling
factor

2 =  

𝑖𝑗

𝑁𝑖
𝐹𝐷 − 𝜔𝑖𝑁𝑖

𝑁𝐷 𝑀𝑖𝑗
−1 𝑁𝑗

𝐹𝐷 − 𝜔𝑗𝑁𝑗
𝑁𝐷 𝑇

+ Penalty Pulls

- proton number
- vetoes
- baseline 
- live time
- expected flux (baseline, 

survival probability, reactors 
power)

𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟑 fit - crosscheck 


