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Summary. — We present recent standard model measurements performed by the
CMS experiment at the LHC, using proton-proton collision data at center-of-mass
energies of 7, 8, and 13 TeV. Standard model processes involving jets and elec-
troweak gauge bosons span many orders of magnitude in production cross section.
Measurements of high-rate processes provide stringent tests of the standard model
and help tune the theoretical predictions and Monte Carlo simulations. Thanks to
the unprecedented energy and the integrated luminosity provided by the LHC, rare
electroweak processes can also be measured for the first time, such as triboson pro-
duction and vector boson production through vector boson scattering. In addition,
new physics phenomena, even beyond the LHC reach, may manifest as enhance-
ments in the multiboson production rate at high energy. Limits on such possible
scenarios are set using an effective field theory with anomalous electroweak gauge
couplings.

PACS 12.15.-y – Electroweak interactions.
PACS 12.38.-t – Quantum chromodynamics.

1. – Introduction

Precision measurements of standard model (SM) processes are an essential part of
the Large Hadron Collider (LHC) physics program, because they probe a wide range of
quantum chromodynamics (QCD) and electroweak (EW) predictions up to the highest
energies available, and they can be used to constrain and improve the theoretical calcu-
lations and Monte Carlo (MC) simulations. In addition, a precise knowledge of the cross
sections and kinematics of SM processes is crucial to detect any signal of new physics
phenomena, which will appear as a deviation from SM expectations.

From 2010 through 2016, the LHC delivered proton-proton (pp) collisions at 7, 8,
and 13TeV for a total integrated luminosity of more than 70 fb−1. In the following, a
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summary will be presented of the main SM measurements involving jets and vector gauge
bosons performed by the CMS experiment.

2. – Jet production

Jet production is a key process to test predictions of perturbative QCD and to estimate
nonperturbative (NP) effects, such as hadronization and multiparton interactions (MPI).
The CMS Collaboration has performed several differential cross section measurements
of inclusive jet and multijet production at all the available energies. Jets are generally
reconstructed using the anti-kT algorithm [1], with a size parameter R varying between
0.4 and 0.7, depending on the specific data set and analysis. These measurements, which
cover more than 7 orders of magnitude, are compared with theoretical predictions at next-
to-leading-order (NLO) QCD and EW accuracy, including corrections for NP effects. An
excellent agreement is observed over most of the phase space. E.g., fig. 1 (left) shows
the double-differential inclusive jet cross section at

√
s = 13TeVas a function of the jet

transverse momentum (pT) and rapidity (y) [2], compared with prediction from program
NLOJet++[3].

The CMS jet measurements are also used to determine the strong coupling constant
αS at very high values of transferred momentum Q [4], as well as to constrain the proton
parton distribution functions (PDF) [5]. In particular, events with high-pT and high-|y|
jets probe large values of the parton fractional momentum x, where the PDFs are poorly
known experimentally. Figure 1 (right) shows the gluon PDF as a function of x at the
starting scale Q2 = 105 GeV2, comparing results from HERA [6] data and those obtained
combining HERA data with CMS inclusive jet measurements at 8TeV. It can be seen
that the CMS data provide an effective constrain at high x.

The very-forward calorimeter CASTOR allows for jet detection in the pseudorapidity
region −6.6 < η < −5.2 [7]. Such high-|η| jets probe very low x values, x ∼ 10−6,
where the DGLAP evolution [8] is expected to break down, while other models might
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Fig. 1. – Left: double-differential inclusive jet cross section in pp collisions at
√

s = 13 TeV,
as a function of the jet pT and |y|. Right: gluon PDF as a function of x at the starting scale
Q2 = 105 GeV2, obtained using HERA data only (hatched band) and combining HERA data
with CMS inclusive jet measurements at 8 TeV(shaded band).
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provide a better description, e.g. the Gribov-Regge theory [9]. Figure 2 shows the jet
differential cross section vs. pT measured at 13TeV with CASTOR data, compared with
theoretical predictions from Pythia8 [10] (based on DGLAP parton evolution) with
CUETP8M1 [11] tune and different PDF and MPI models. As can be seen, the experi-
mental uncertainties in the measured cross sections—dominated by the CASTOR energy
scale—are currently too large to discriminate among different models. The low-energy
region, however, appears to be quite sensitive to the MPI contribution.
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Fig. 2. – Differential jet-pT spectrum in CASTOR, compared to predictions from Pythia8 with
CUETP8M1 tune and different PDF and MPI models.

3. – W and Z boson production

The inclusive production rate of EW gauge bosons at the LHC is relatively high,
and W and Z bosons are used as “standard candles” for multiple purposes, such as
detector calibration and lepton efficiency measurement. The production cross sections
and kinematic spectra measured at CMS at

√
s = 7, 8, and 13TeV [12] are in good

agreement with NLO and next-to-NLO (NNLO) theoretical calculations, as shown in
fig. 3.

The associated production of vector gauge bosons with jets is sensitive to higher-
order QCD corrections, but also to soft QCD effects, such as the parton showering. The
cross sections and jet kinematics are well reproduced by MC simulations and theoretical
calculations at NLO and NNLO (see fig. 4, left) [13]. Measurements of vector boson pro-
duction in association with heavy-quark jets are also available (e.g., see fig. 4, right) [14].

The EW-induced production of W bosons through vector boson fusion (fig. 5, left)
has also been observed [15]. This process is characterized by the presence of two jets
at high |η|, with large rapidity separation and high invariant mass (fig. 5, right). The
measured cross section is consistent with leading-order (LO) predictions.

In order to assess the achievable precision on the measurement of the W-boson mass,
CMS has performed a preliminary measurement of the Z-boson mass with a “W-like”
approach [16], i.e. treating either muon from a Z → µ+µ− decay as a neutrino. Thanks
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Fig. 3. – Left: measurements of the total W+, W−, W, and Z production cross sections times
branching fractions vs.

√
s at CMS and other experiments at lower-energy colliders, compared

to NNLO theoretical predictions. Right: Z → µ+µ− differential cross section as a function of
the dimuon pT, compared to NLO and NNLO calculations.

to novel calibration algorithms, muon momentum and hadronic recoil are both deter-
mined with precisions better than 2 × 10−4. This is crucial to achieve an experimental
uncertainty on the W mass of about 20MeV, competitive with previous measurements.
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Fig. 4. – Left: differential cross section for the production of a W boson in association with one
or more jets, as a function of the leading jet pT. The measurement is compared to theoretical
predictions at NLO and NNLO. Right: ratio of the Z + c quark and Z + b quark differential
cross sections, as a function of the Z-boson pT.
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Fig. 5. – Left: a typical Feynman diagram describing the EW-induced production of a W boson
via vector boson fusion. Right: distribution of the two-jet invariant mass mjj in µνµjj events.

4. – Multiboson production

The measurement of EW-induced multiboson production is a fundamental test of the
SM, because it probes the vector boson self-interactions, i.e. the existence of triple and
quartic gauge couplings (TGC, QGC). Multiboson processes also constitute an irreducible
background for many Higgs-boson measurements and new-physics searches, thus a precise
knowledge of their cross sections is essential. Any deviation from SM predictions would
represent a sign of new physics.

The relatively large diboson production rate at the LHC allows us to select leptonic
final states, characterized by a clean experimental signature and high trigger efficiencies.
When possible, hadronic decays are also considered to increase the statistical significance
of the measurements. Processes WW, WZ, and ZZ were studied in final states with two,
three, or four charged leptons at all available energies. The WW cross section and kine-
matics prove sensitive to QCD NNLO contributions, partly because of the requirement of
a limited number of jets and b-tagged jets applied in the measurement [17]. Also in WZ
and ZZ, newly available NNLO calculations improve the agreement with the measured
cross sections (see fig. 6) [18].

The exclusive WW production by photon scattering, pp → p(∗)p(∗)γγ → p(∗)p(∗)WW,
is characterized by the absence of hadronic activity at the primary vertex. This process
was measured at 7 and 8TeV [19] using final states with one electron and one muon, thus
suppressing the background from exclusive dilepton production γγ → ℓℓ. The observed
data are consistent with the SM predictions for this process, and correspond to a signal
significance of 3.4 standard deviations (fig. 7, left).

The EW-induced production of Wγ + 2 jets and Zγ + 2 jets through vector boson
scattering (fig. 7, right) was also measured at 8TeV [20], with signal significances of 2.7
and 3.0 standard deviations, respectively. The measured cross sections are in agreement
with the SM predictions.

Several triboson processes have been measured in CMS. E.g., fig. 8 shows the pT of
the γγ system in Wγγ (left) and Zγγ (right) events [21]. As can be seen, the measured
data are consistent with the SM expectations, with signal significances of 2.4 and 5.9
standard deviations for Wγγ and Zγγ, respectively. This represents the first observation
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of Zγγ production.

5. – Anomalous gauge couplings

The SM predicts precisely the possible self-interactions of gauge bosons. However, new
physics phenomena at high energy scales—even beyond the LHC reach—can manifest
by modifying the effective vector boson couplings. These effects can be modeled as
anomalous triple and quartic gauge couplings (ATGC, AQGC) by means of an effective
Lagrangian or an effective field theory. Such anomalous couplings generally result in an
increase of the multiboson production cross section at high energies, which can be probed
by analyzing suitable observables, such as the boson pT or the diboson invariant mass.
E.g., fig. 9 (left) shows the WV invariant mass (V = W, Z) in events with semileptonic
final states, WV → ℓνjj [22]. The dashed line shows the increase in WV rate at high
mass in the presence of an anomalous WWW coupling.

In the absence of deviations from the SM expectations, upper limits on the ATGC and
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Right: dijet invariant mass in the EW-induced Zγ + 2 jets process.



ELECTROWEAK AND QCD PHYSICS AT CMS 7

 [GeV]γ γ
T

p
0 20 40 60 80 100 120 140

E
ve

nt
s 

/ 5
 G

eV

0

1

2

3

4

5

6

7

8
Data

 SignalγγW
γγZ

Other Multiboson
 fakesγ→jet

Total uncertainty

Preliminary
CMS

 (8 TeV)-119.4 fb

Muon Channel

 [GeV]γ γ
T

p
0 20 40 60 80 100 120 140

E
ve

nt
s 

/ 5
 G

eV

0

2

4

6

8

10

12

14

16

18 Data

γγZ

Other Multiboson

 fakesγ→jet

Total uncertainty

Preliminary
CMS

 (8 TeV)-119.4 fb

Muon Channel
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events.

AQGC effective parameters can be set. In particular, inclusive diboson measurements
help constrain possible ATGC contributions, while triboson and EW-induced diboson
processes give access to AQGC. Numerous ATGC and AQGC searches have been per-
formed in CMS using 7, 8, and 13TeV data. As an example, fig. 9 (right) presents a
summary of the ATLAS and CMS limits on neutral ATGC of type γZZ and ZZZ. More
results can be found in ref. [23].
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neutral ATGC γZZ and ZZZ obtained by the ATLAS (blue) and CMS (red) experiments with
7, 8, and 13 TeV data.

6. – Conclusions

A summary was presented of the main QCD and EW measurements conducted at
CMS, using LHC data at 7, 8, and 13TeV. Several (multi)jet differential cross sections
have been measured, and constraints on PDFs and αS have been derived. The cross
sections and kinematics of W and Z boson production have been studied with very high
precision, verifying theoretical calculations up to the NNLO in QCD. Diboson processes
have also been measured with increasing precision over the last few years, driving the
need for NNLO predictions. Rarer processes, such as triboson, exclusive diboson, or EW-
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induced (di)boson production are also becoming accessible and the first observations have
been achieved. In addition, multiboson measurements have been used to constrain triple
and quartic gauge couplings, indirectly probing new physics scenarios with anomalous
couplings. The new data that will be delivered by the LHC in the next years will help
improve these results, especially by pushing the measurements to ever higher energies.
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