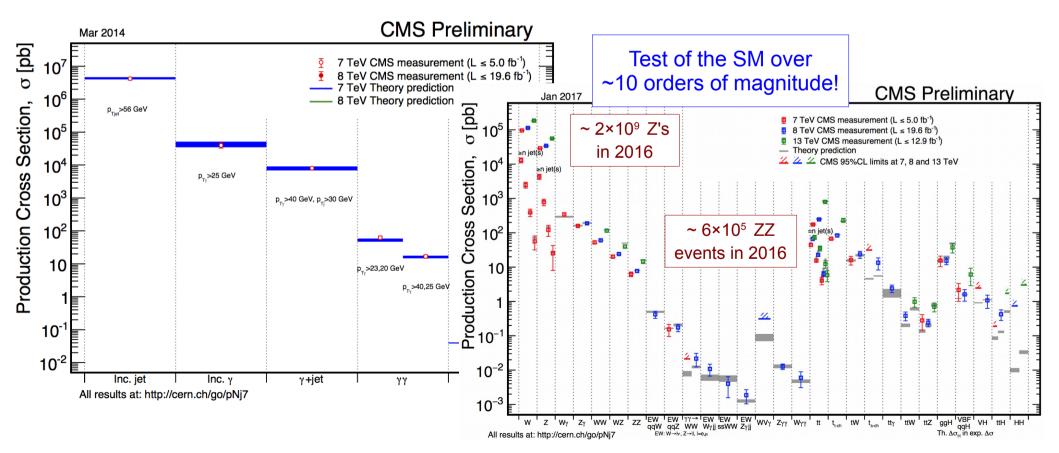


Electroweak and QCD Physics at CMS

Daniele Trocino (Northeastern University)

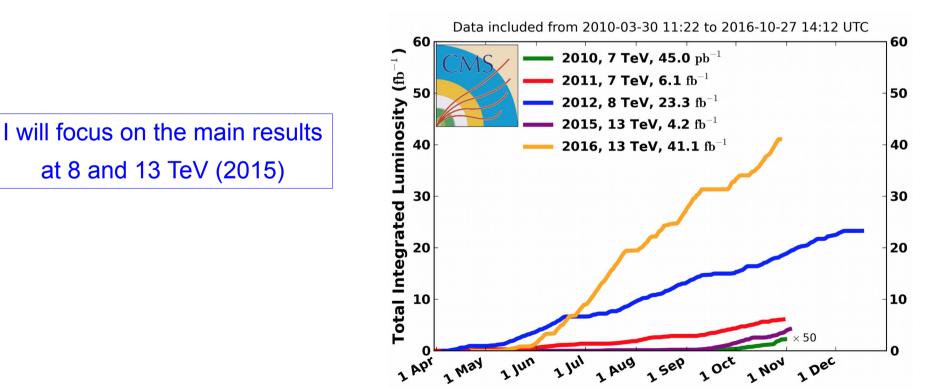
on behalf of the CMS Collaboration


Les Rencontres de Physique de la Vallée d'Aoste March 5–11, 2017 — La Thuile, Italy

Why Standard Model Physics?

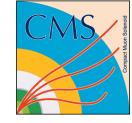
- SM precision measurements are important at the LHC
 - test a wide range of QCD and EW predictions to the highest energies available
 - tune theoretical calculations and MC generators
 - provide precise modeling of backgrounds to many searches
 - any deviation from the SM expectation may be a sign of new physics!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined



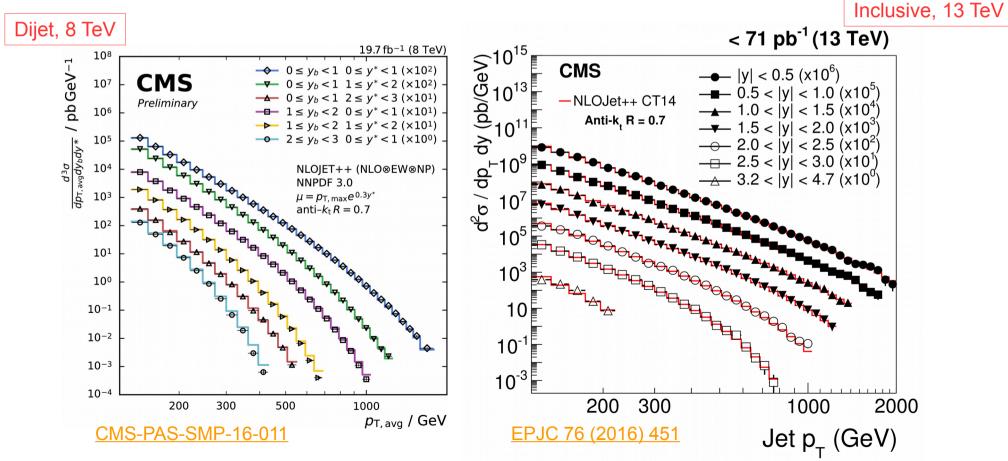
LHC Data Taking

Run I


CCMS Poulog unit tradue

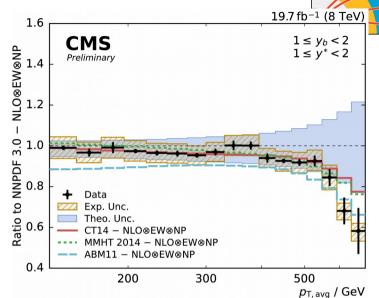
- LHC has delivered > 70 fb⁻¹ of proton-proton collisions
 - 7 TeV: 6 fb⁻¹ (2010-11)
 - 8 TeV: 23 fb⁻¹ (2012)
 - 13 TeV: 4 fb⁻¹ (2015) + 40 fb⁻¹ (2016) **Run II**
- The 2016 data will improve most of the Run-I results \rightarrow *underway*!

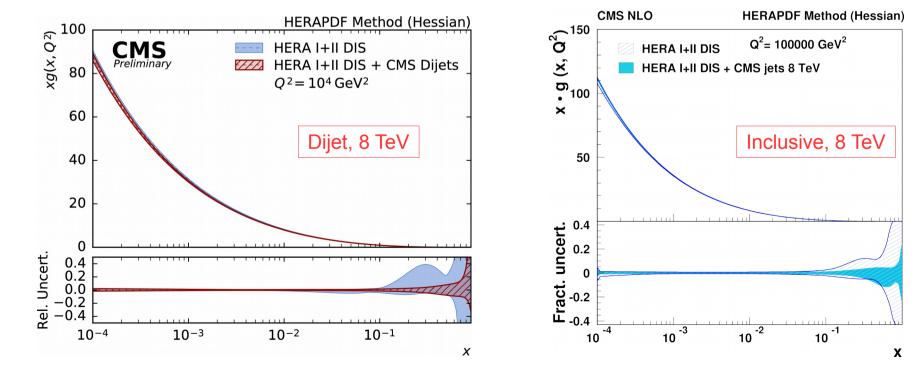
Measurement	(7) 8 TeV	13 TeV
double-differential inclusive jet	<u>arXiv:1609.05331</u>	EPJC 76 (2016) 451
triple-differential dijet	CMS-PAS-SMP-16-011	
$\alpha_{\rm s}$ from $R_{\rm 32}$	CMS-PAS-SMP-16-008	
very-forward inclusive jet	CMS-PAS-FSQ-12-023 (7 TeV)	CMS-PAS-FSQ-16-003


* A short list of the latest jet studies — far from being exhaustive!

Jet Production

- Double- and triple-differential (di)jet cross section vs jet p_T and y ($|y_1 + y_2|$, $|y_1 y_2|$)
 - measurement covers ~7 orders of magnitude, for jet $p_{\rm T}$ up to ~ 2 TeV
 - compared with NLO QCD predictions + NLO EW + nonperturbative effects
 - very good agreement over most of the phase space

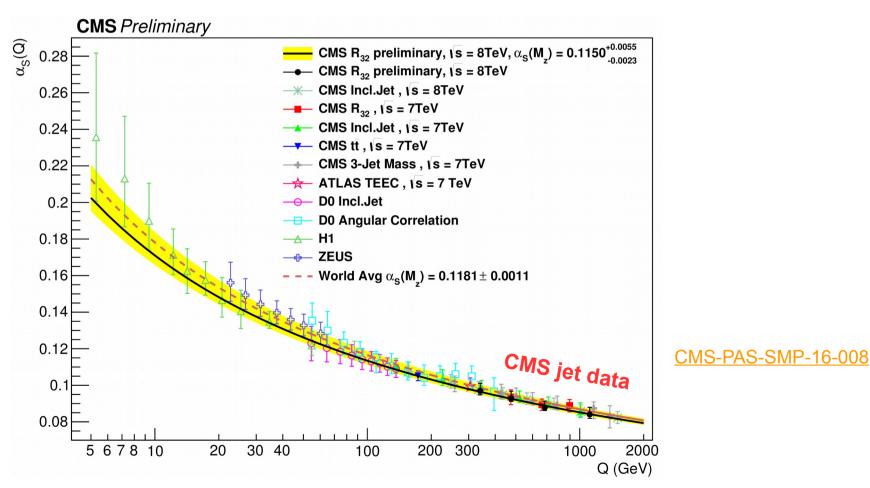



D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017

Jet Production: PDF Constraints

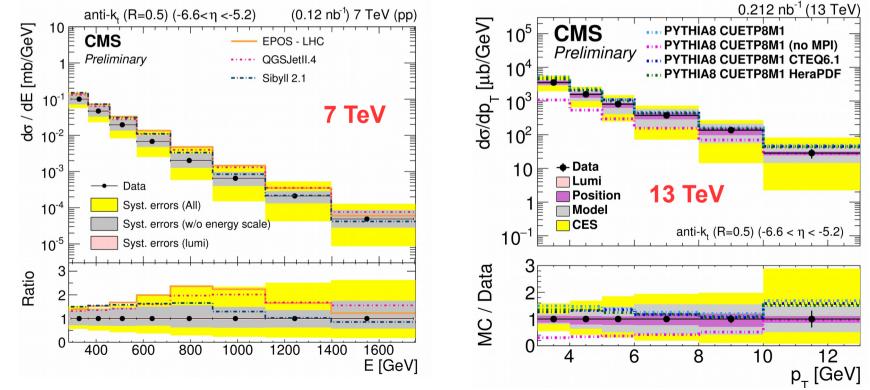
- Discrepancies for boosted dijet topologies:
 - high $|y_1 + y_2|$, high $p_T \Rightarrow high x$ values
- Small experimental uncertainties
 ⇒ effective constrain on PDF at high x

CMS-PAS-SMP-16-011


D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017

Jet Production: α_s Measurement

- Jet differential cross sections are sensitive to $\alpha_s \Rightarrow$ determine α_s from a fit of the theoretical predictions to the data
- Estimates of $\alpha_s(M_Z)$ are obtained from different measurements, e.g. the differential inclusive-jet and dijet cross sections, or the ratio of inclusive 3-jet to 2-jet cross sections


D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017

Very-Forward Jets

- The CASTOR calorimeter allows for jet measurements at $-6.6 < \eta < -5.2$
 - access to very low x (~10⁻⁶), where DGLAP evolution is expected to break down
 - differential cross sections in jet energy or p_T compared to different MC models and tunes, based on either DGLAP or Gribov-Regge theory at low x
 - energy scale uncertainty currently too large to discriminate among models
 - low-energy region very sensitive to MPI contribution

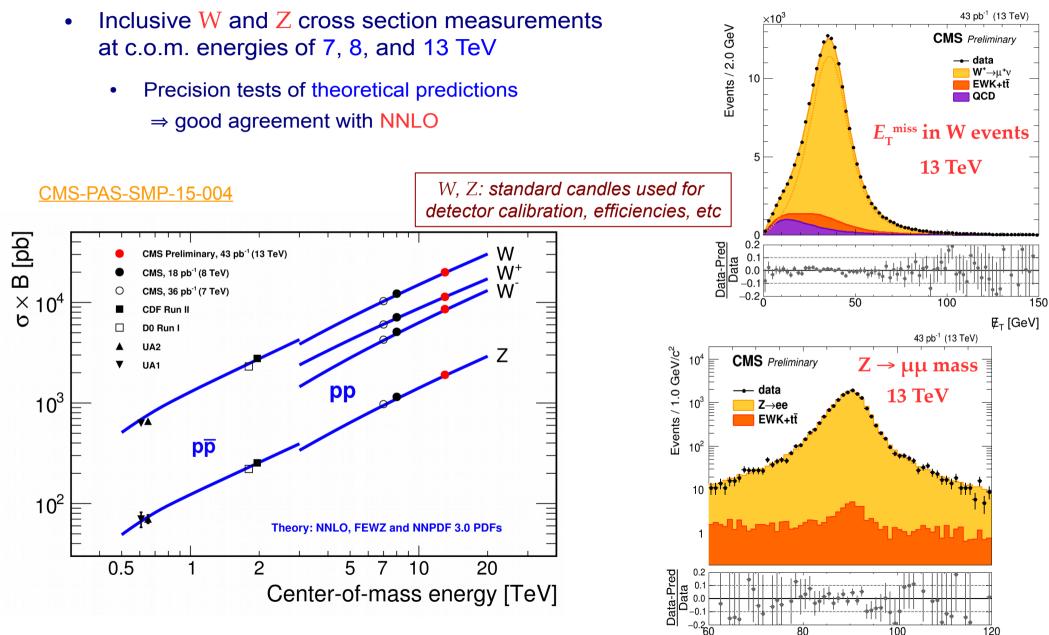
CMS-PAS-FSQ-12-023

D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017

W and Z Bosons (+ Jets)

Measurement	(7) 8 TeV	13 TeV
Z (+ jets)	<u>CMS-SMP-14-012</u> <u>PLB 750 (2015) 154</u> <u>CMS-PAS-SMP-14-009</u>	<u>CMS-PAS-SMP-15-004</u> <u>CMS-PAS-SMP-15-010</u> <u>CMS-PAS-SMP-15-011</u>
DY	<u>CMS-PAS-SMP-15-002</u> EPJC 76 (2016) 325 EPJC 75 (2015) 147	CMS-PAS-SMP-15-004 CMS-PAS-SMP-16-009
W (+ jets)	JHEP 02 (2017) 096 arXiv:1610.04222	CMS-PAS-SMP-16-005
V + HF	EPJC 77 (2017) 92 arXiv:1611.06507 CMS-PAS-SMP-15-009 EPJC 77 (2017) 92	
VBF W/Z	<u>JHEP 11 (2016) 147 EPJC 75 (2015) 66</u>	
W-like Z mass	CMS-PAS-SMP-14-007 (7 TeV)	

See also Kadir Ocalan's talk on Tuesday (W + jets)


March 9, 2017

D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017

Single W/Z Cross Sections

March 9, 2017

D. Trocino – Electroweak and QCD Physics at CMS

 $\mathsf{M}(\mathsf{e}^{\scriptscriptstyle +}\mathsf{e}^{\scriptscriptstyle -}) \; [\mathsf{GeV/c}^2] \qquad 10$

W/Z Differential Cross Sections

50

40

30

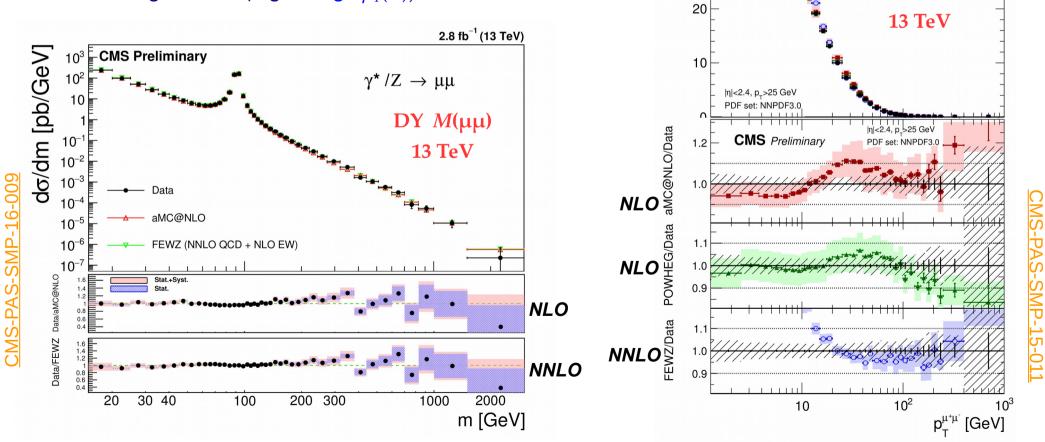
CMS Preliminary

 $d\sigma/dp_T^{\mu^+\mu^-}$ [pb/GeV]

2.3 fb⁻¹ (13 TeV)

🔶 Data

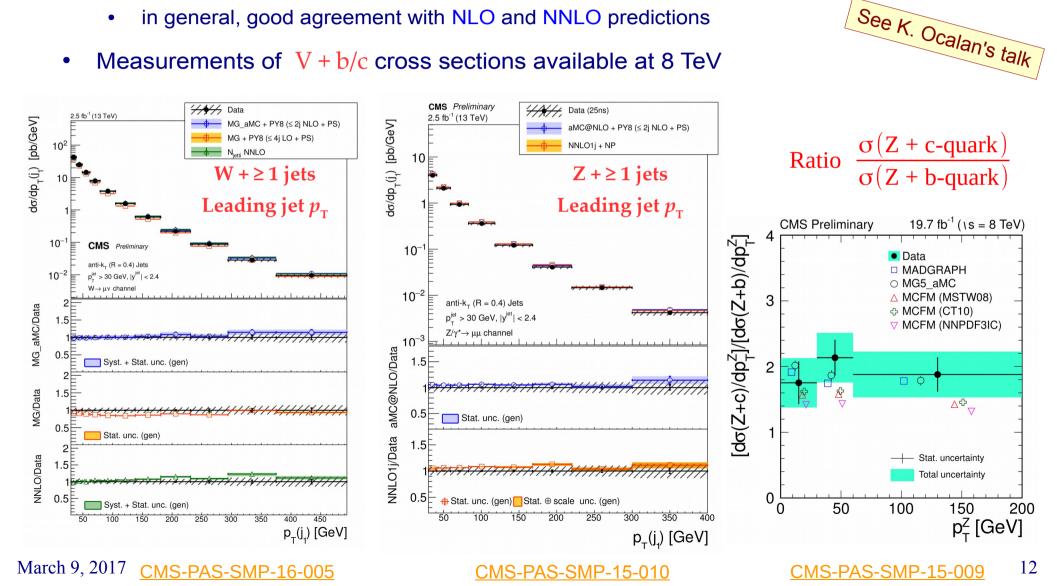
- aMC@NLO


- POWHEG

- FEWZ

 $p_{\rm T}(\mathbf{Z})$

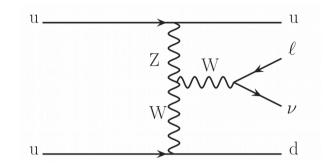
- decent agreement with NLO and NNLO predictions within uncertainties
- in general, NNLO (FEWZ) shows better agreement (e.g. at high $p_{\rm T}(Z)$)

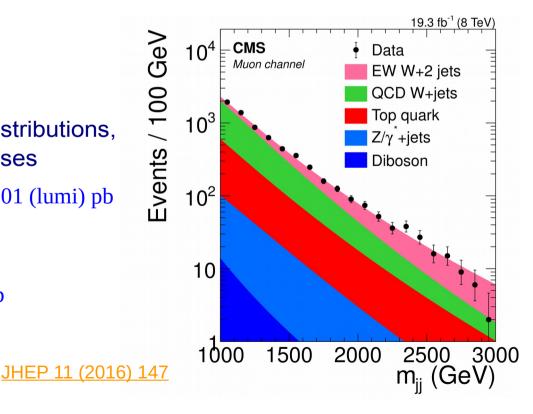

D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017

V + Jets Differential Cross Sections

- Sensitive to higher-order corrections, but also soft-QCD effects (e.g. PS)
 - compared to MC simulations (ME + PS) and fixed-order calculations
 - in general, good agreement with NLO and NNLO predictions •
- Measurements of V + b/c cross sections available at 8 TeV

W Boson Electroweak Production

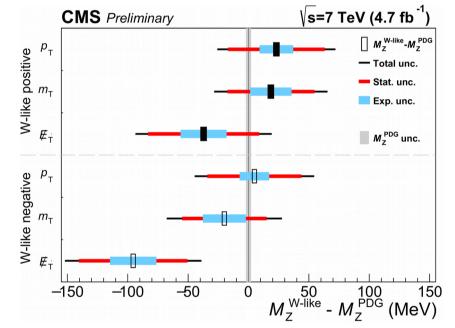

- Vector boson fusion (VBF) characteristic signature
 - 2 jets at high $|\eta|$
 - high dijet invariant mass m_{ij}
 - large rapidity separation $\Delta \eta$
 - little hadronic activity in the central part of the detector
 - multivariate analysis to increase background discrimination
- Fiducial cross section from fits to m_{jj} distributions, using parametric models for all processes


 $\sigma_{\rm fid}~$ = 0.42 ± 0.04 (stat) ± 0.09 (syst) ± 0.01 (lumi) pb

Consistent with LO prediction

 $\sigma_{\rm LO}~$ = 0.50 \pm 0.02 (scale) \pm 0.02 (PDF) pb

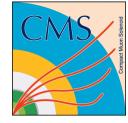
March 9, 2017



Towards a Measurement of W Mass

- "W-like" measurement of the Z boson mass in $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ events
 - μ^{+} (μ^{-}) treated as a neutrino to form the W^{-} -like (W^{+} -like) candidate
 - test of the W-mass measurement procedure and achievable precision
- Critical aspects
 - Muon momentum scale: ~ 2 × 10⁻⁴
 - achieved thanks to a novel calibration algorithm using dimuons from J/ψ , $\Upsilon(1S)$
 - Hadronic recoil calibration: < 2 × 10⁻⁴
- Final uncertainties ~ 20 MeV (exp)

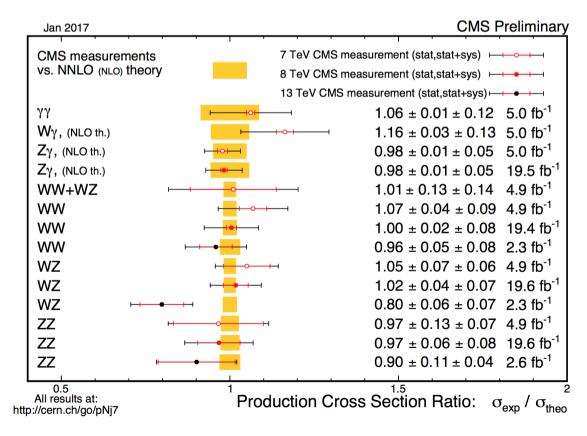
~ 30 MeV (theo)


→ Competitive with current W mass measurements!

CMS-PAS-SMP-14-007

March 9, 2017

Multibosons

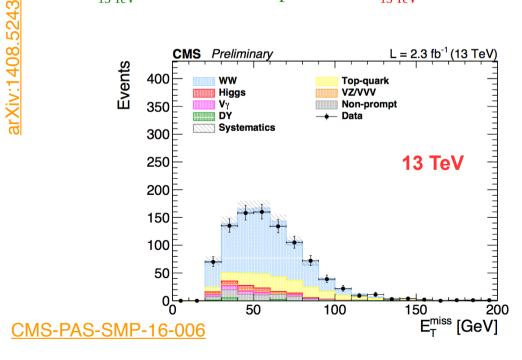


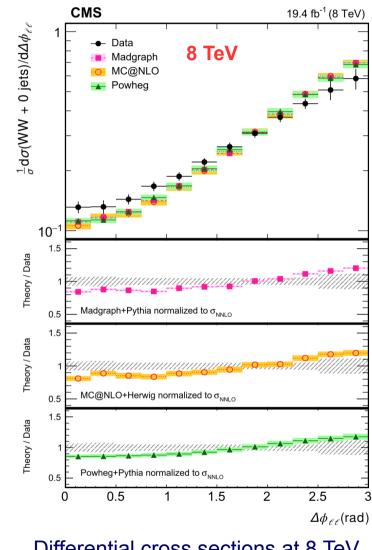
Measurement	(7) 8 TeV	13 TeV
$ZZ \rightarrow 4\ell$	<u>PLB 740 (2015) 250</u>	<u>PLB 763 (2016) 280</u>
$ZZ \rightarrow 2\ell 2\nu$	<u>EPJC 75 (2015) 511</u>	
$Z\gamma \rightarrow \ell\ell\gamma$	<u>JHEP 04 (2015) 164</u>	
$Z\gamma \rightarrow \nu \nu \gamma$	PLB 760 (2016) 448	CMS-PAS-SMP-16-004
$WW \rightarrow \ell \nu \ell \nu$	<u>EPJC 76 (2016) 401</u>	CMS-PAS-SMP-16-006
$WZ \rightarrow 3\ell\nu$	<u>arXiv:1609.05721</u>	<u>PLB 766 (2017) 268</u>
$WV \to \ell \nu J$	CMS-PAS-SMP-13-008	CMS-PAS-SMP-16-012
$WV\gamma \rightarrow \ell \nu j j \gamma$	PRD 90 (2014) 032008	
$V\gamma\gamma \rightarrow \ell\nu\gamma\gamma / \ell\ell\gamma\gamma$	CMS-PAS-SMP-15-008	
$\gamma\gamma \rightarrow WW \rightarrow \ell \nu \ell \nu$	<u>JHEP 08 (2016) 119</u>	
$VBS \text{ ss } WW \rightarrow \ell \nu \ell \nu$	PRL 114 (2015) 051801	
$VBS W\gamma \rightarrow \ell \nu \gamma$	<u>arXiv:1612.09256</u>	
$VBS \ Z\gamma \rightarrow \ell\ell\gamma$	<u>arXiv:1702.03025</u>	
$VBS WZ \rightarrow \ell \nu \ell \ell$	PRL 114 (2015) 051801	

Multiboson Measurements

- Important test of the SM \rightarrow probes gauge-boson self-interactions
- Background to many Higgs searches and new physics searches
- Relatively large diboson rates at the LHC
 - use mainly W/Z leptonic decays for clean signatures and high trigger efficiencies
 - add hadronic decays where possible to increase statistics

D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017




$WW \rightarrow \ell \nu \ell' \nu$

- Clean signature: exactly 2 charged leptons + E_{T}^{miss}
- Main background from $t\bar{t} \rightarrow \ell^+ \nu \ell^- \overline{\nu} b \overline{b}$
 - no more than 1 jet, no b-tagged jets
 - jet veto efficiency sensitive to higher-orders

 $\sigma_{13 \text{ TeV}}^{\text{exp}} = 115.3 \pm 5.8 \text{ (stat)} \pm 5.7 \text{ (exp)} \pm 6.4 \text{ (theo)} \pm 3.6 \text{ (lumi) pb}$ $\sigma_{13 \text{ TeV}}^{\text{NNLO}} = 120.3 \pm 3.6 \text{ pb} \text{ vs } \sigma_{13 \text{ TeV}}^{\text{NLO}} = 106.0 \pm 6.6 \text{ pb}$

Differential cross sections at 8 TeV Some discrepancies w.r.t. NLO predictions EPJC 76 (2016) 401

March 9, 2017

D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017

 $WZ \rightarrow \ell \nu \ell' \ell'$

Events / 20 GeV

90

80

70E

60 E

50

40E

CMS

13 TeV

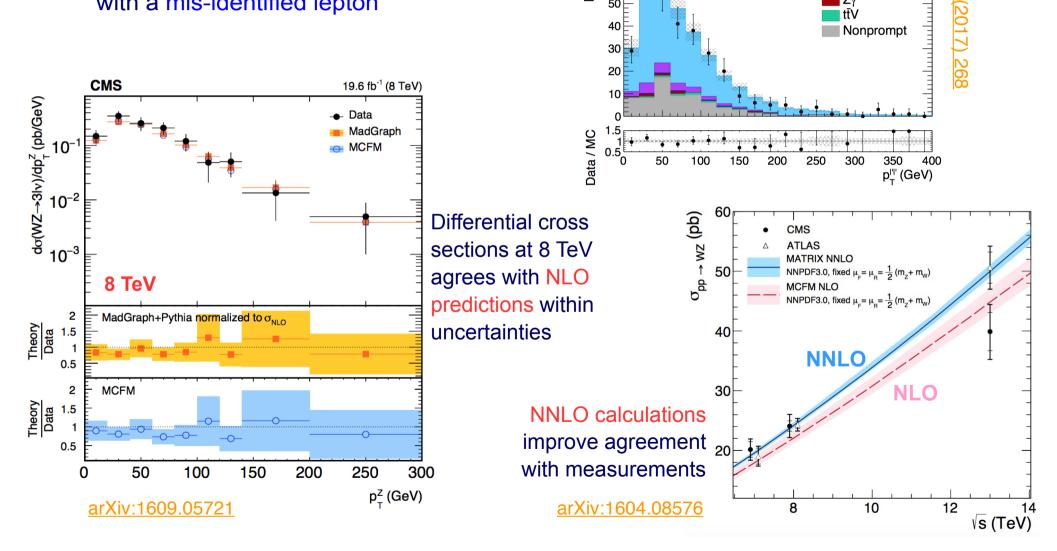
+ Data

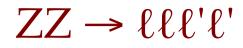
WZ

VVV

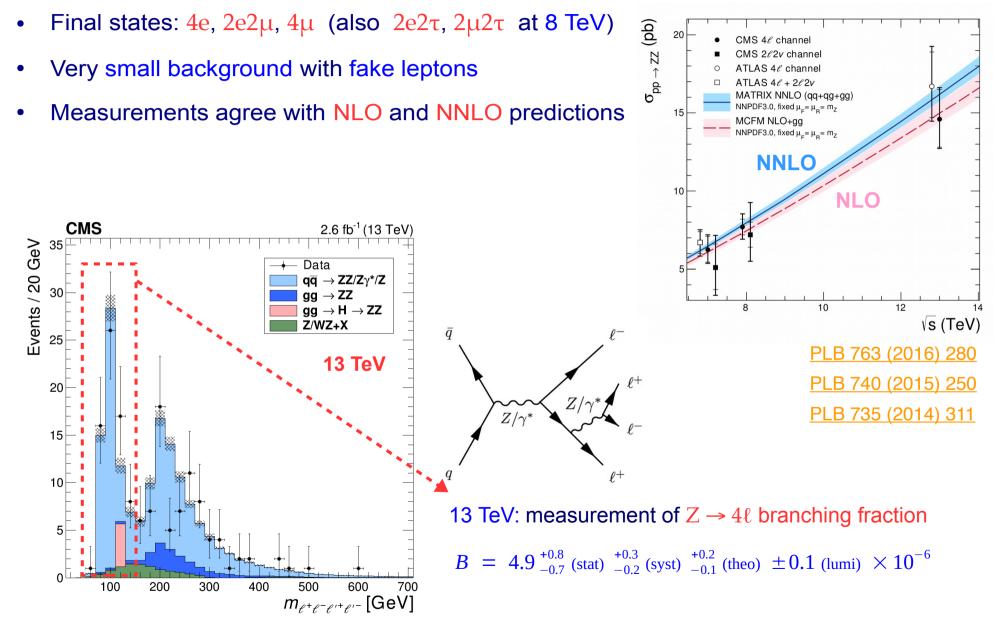
Zγ

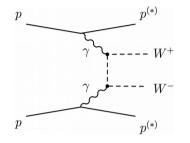
tī

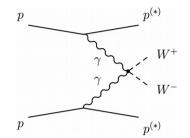

ZZ


J

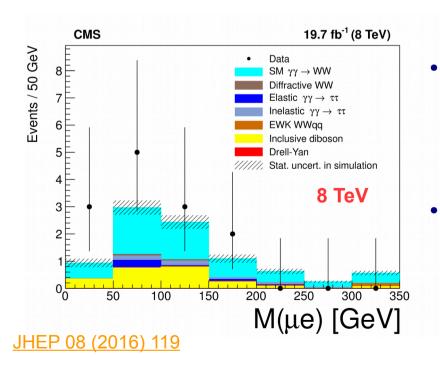
000


- Clean three-lepton signature
- Main backgrounds: Z + jets, $t\bar{t}$ • with a mis-identified lepton





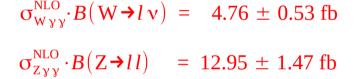
Exclusive WW Production

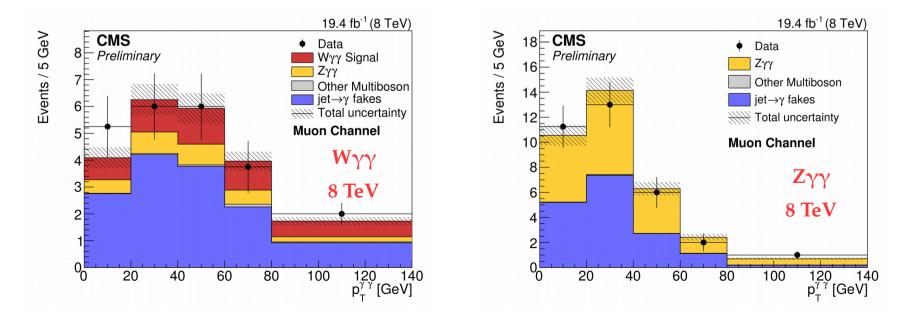


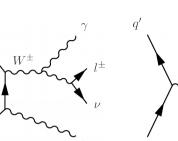
- Exclusive or quasi-exclusive $\gamma\gamma \rightarrow WW$ production
 - no hadronic activity at the primary vertex, no additional tracks

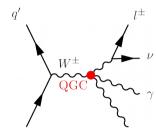
- Use leptonic WW decays with different flavor, $\,e^{\scriptscriptstyle\pm}\mu^{\scriptscriptstyle\mp}$
 - ~10 times less background, eliminate exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ production and DY

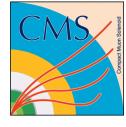
- Signal significance: 3.4σ (expected 2.8σ)
 - combined 7 and 8 TeV data sets
 - signal evidence!
 - Cross section consistent with SM prediction $\sigma_{8 \text{ TeV}}^{\exp} \left(pp \rightarrow p^{(*)} W^{+} W^{-} p^{(*)} \rightarrow p^{(*)} \mu^{\pm} e^{\mp} p^{(*)} \right) = 10.8^{+5.1}_{-4.1} \text{ fb}$ $\sigma_{8 \text{ TeV}}^{SM} = 6.2 + 0.5 \text{ fb}$

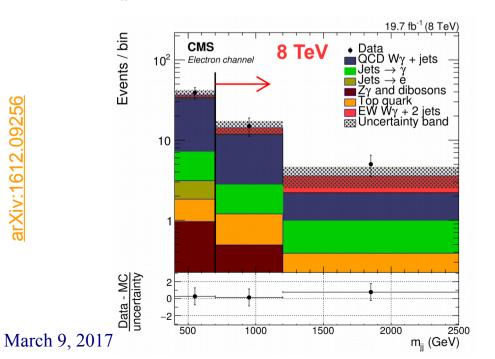


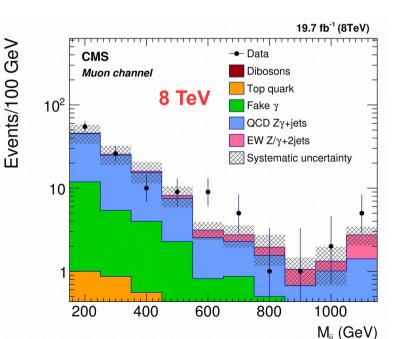

CMS-PAS-SMP-15-008

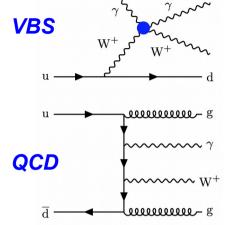

Triboson Production: $W\gamma\gamma$ and $Z\gamma\gamma$


- Select $W\gamma\gamma \rightarrow \mu\nu\gamma\gamma$ and $Z\gamma\gamma \rightarrow ee\gamma\gamma/\mu\mu\gamma\gamma$ events
- Main background: jets faking photons •
- Signal significance: 2.4σ for $W\gamma\gamma$, 5.9σ for $Z\gamma\gamma$
- Fiducial cross sections in agreement with NLO predictions •


 $\sigma_{W_{VV}}^{\text{fid}} \cdot B(W \rightarrow l_V) = 6.0 \pm 1.8 \text{ (stat)} \pm 2.3 \text{ (syst)} \pm 0.2 \text{ (lumi) fb}$ $\sigma_{Z,vv}^{\text{fid}} \cdot B(Z \rightarrow ll) = 12.7 \pm 1.4 \text{ (stat)} \pm 1.8 \text{ (syst)} \pm 0.3 \text{ (lumi) fb}$


arXiv:1612.09256


Electroweak Diboson Production



- $W\gamma + 2$ jets and $Z\gamma + 2$ jets produced • via vector boson scattering (VBS)
 - Leptonic W or Z decays + VBS topology •
 - Main background: QCD $W\gamma + 2$ jets and $Z\gamma + 2$ jets •
- Signal significance: 2.7σ for $W\gamma jj$, 3.0σ for $Z\gamma jj$
- Measured cross sections in agreement with LO predictions

$$\sigma_{W_{VII}}^{fid} = 10.8 \pm 4.1 \text{ (stat)} \pm 3.4 \text{ (syst)} \pm 0.3 \text{ (lumi) fb}$$

 $\sigma_{Z_{YII}}^{\text{fid}} = 1.86^{+0.89}_{-0.75} \text{ (stat)}^{+0.41}_{-0.27} \text{ (syst)} \pm 0.05 \text{ (lumi) fb}$

- The SM predicts exact values for vector boson couplings
- New physics at very high energy scales beyond the LHC reach can manifest by modifying the vector boson couplings, e.g. through loops
- Anomalous triple and quartic gauge couplings (aTGC, aQGC) can be modeled with an effective Lagrangian or an effective field theory approach, e.g.

$$\mathcal{L}/g_{WWV} = ig_1^V [W^{\dagger}_{\mu\nu}W^{\mu}V^{\nu} - W^{\dagger}_{\mu}V_{\nu}W^{\mu\nu}] + i\kappa^V W^{\dagger}_{\mu}W_{\nu}V^{\mu\nu} + \frac{i\lambda^V}{M_W^2} W^{\dagger}_{\lambda\mu}W^{\mu}_{\ \nu}V^{\nu\lambda} + \frac{i\lambda^V}{M_W^2} W^{\dagger}_{\lambda\mu}W^{\mu}_{\ \nu}V^{\nu\lambda}$$
(WW γ and WWZ additional couplings)

- Anomalous couplings result in an increase of cross sections at high energies
 - diboson invariant mass $M_{
 m VV}$ and boson transverse momentum $p_{
 m T}$ are suitable observables
- In the absence of deviations from the SM expectations, upper limits on aTGC/aQGC parameters can be set

aTGC and aQGC Searches in Run-I

Events/GeV 0

10

 10^{-2}

10⁻³

10

200

300

 $77 \rightarrow 2|2v$

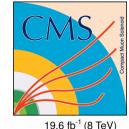
400

500

600

700

 $Z \rightarrow 2I$ (Data)


800

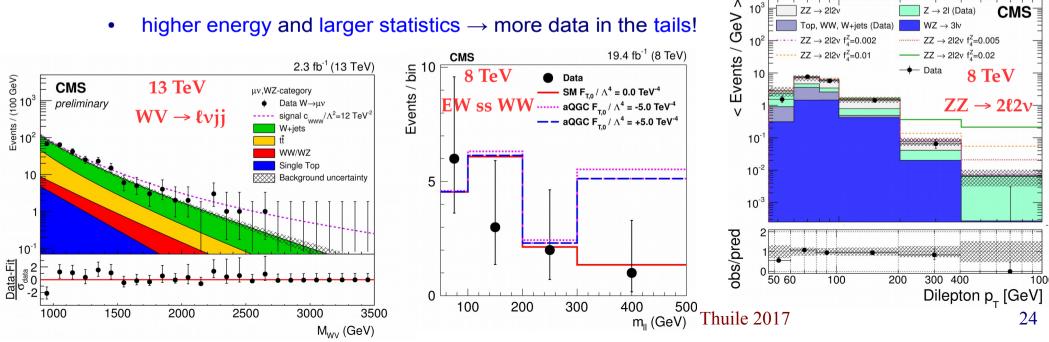
900 E_{T}^{γ} [GeV]

CMS

19.6 fb⁻¹ (8 TeV)

Data/SM 11 CMS

 γ +jet, W($\mu\nu$), $\gamma\gamma$, Z(II) γ

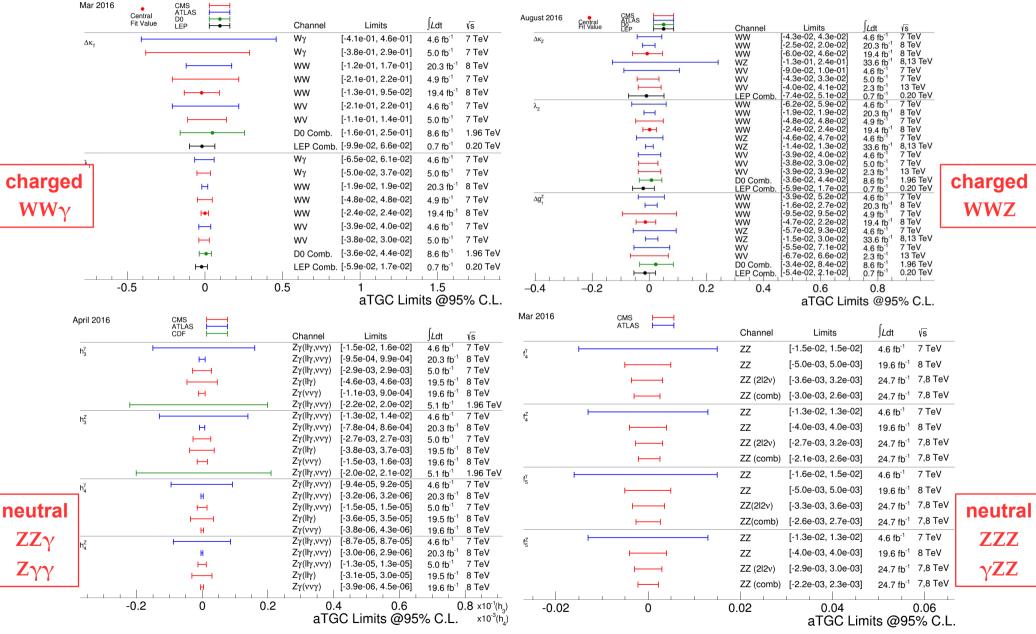

Beam halo OCD $W \rightarrow ev$ $W\gamma \rightarrow I\gamma\gamma$

 $Z\gamma \rightarrow \nu \nu \gamma$ Data

Bkg. uncertainty

 h_{2}^{γ} =-0.001, h_{1}^{γ} =0.0

- Diboson and triboson measurements are the natural choice to search for anomalous gauge couplings
 - aTGC: inclusive diboson channels
 - aQGC: triboson and EW diboson processes
- Numerous searches performed during Run-I (and Run-II) •
 - stringent limits on several couplings, comparable with or exceeding LEP results
- The analysis of 2016 data is expected to improve on Run-I results
 - higher energy and larger statistics \rightarrow more data in the tails!



Summary of aTGC Limits

All results and references at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

March 9, 2017

D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017

Summary of aQGC Limits

All results and references at <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC</u>

CMS ATLAS April 2016 Channel Limits Ldt ١s $f_{M,0} / \Lambda^4$ WVγ [-7.7e+01, 8.1e+01] 8 TeV 19.3 fb⁻¹ 8 TeV Zγ [-7.1e+01, 7.5e+01] \mathbf{H} 19.7 fb⁻¹ Wγ [-7.7e+01, 7.4e+01] 8 TeV \vdash 19.7 fb⁻¹ [-3.3e+01, 3.2e+01] 8 TeV H ss WW 19.4 fb⁻¹ $\gamma\gamma \rightarrow WW$ [-4.2e+00, 4.2e+00] 7,8 TeV 24.7 fb⁻¹ $f_{M,1}/\Lambda^4$ WVγ J [-1.3e+02, 1.2e+02] 19.3 fb⁻ 8 TeV Zγ [-1.9e+02, 1.8e+02] 8 TeV 19.7 fb⁻¹ Wγ [-1.2e+02, 1.3e+02] 19.7 fb⁻¹ 8 TeV ss WW [-4.4e+01, 4.7e+01] 8 TeV H-L 19.4 fb⁻¹ 7,8 TeV γγ→WW [-1.6e+01, 1.6e+01] 24.7 fb⁻¹ ы $f_{M,2}/\Lambda^4$ Ζγγ [-5.1e+02, 5.1e+02] 20.3 fb⁻ 8 TeV Wγγ [-2.5e+02, 2.5e+02] 8 TeV J 20.3 fb⁻¹ Zγ [-3.2e+01, 3.1e+01] 8 TeV н 19.7 fb⁻¹ Wγ н -2.6e+01, 2.6e+01] 19.7 fb⁻¹ 8 TeV $f_{M,3} / \Lambda^4$ Ζγγ -9.2e+02, 8.5e+02] 20.3 fb⁻¹ 8 TeV Wγγ [-4.7e+02, 4.4e+02] 20.3 fb⁻¹ 8 TeV н Zγ [-5.8e+01, 5.9e+01] 19.7 fb⁻¹ 8 TeV Wγ -4.3e+01, 4.4e+01] 8 TeV н 19.7 fb⁻¹ $f_{M,4}/\Lambda^4$ Wγ н -4.0e+01, 4.0e+01] 19.7 fb⁻¹ 8 TeV $f_{M,5}/\Lambda^4$ Wγ н [-6.5e+01, 6.5e+01] 19.7 fb 8 TeV Wγ $f_{M,6} / \Lambda^4$ -1.3e+02, 1.3e+02 19.7 fb⁻ 8 TeV [-6.5e+01, 6.3e+01] 1-1 ss WW 19.4 fb⁻ 8 TeV $f_{M,7}/\Lambda^4$ ⊢ — ⊣ Wγ [-1.6e+02, 1.6e+02] 19.7 fb⁻ 8 TeV [-7.0e+01, 6.6e+01] 19,4 fb⁻¹ 8 TeV ss WW -1000 2000 3000 0 1000 aQGC Limits @95% C.L. [TeV-4]

Dimension-8 mixed transverse and longitudinal parameters $f_{M,i}$


pril 2016	CMS HILLAS	Channel	Limits	∫∠dt	√s
$f_{T,0}/\Lambda^4$		Wγγ	[-3.8e+01, 3.8e+01]	19.4 fb ⁻¹	8 TeV
1,0	F	Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	+I	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
	I	WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	H	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
1	⊢−− I	Ŵγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	F1	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
f _{T,1} /Λ ⁴		Wγγ	[-4.6e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
	H	Zγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	H	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	F-1	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,2}/\Lambda^4$	⊢−−−−	Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	⊢I	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	FI	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,5}/\Lambda^4$	⊢ −−−1	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
	H	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,6} / \Lambda^4$	н	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,7}/\Lambda^4$	⊢+	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,8} / \Lambda^4$	Н	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,9}/\Lambda^4$	⊢ −−1	Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
	►	Zγ	[-4.0e+00, 4.0e+00]	19.7 fb⁻¹	8 TeV
	50 0 50		100	150	
-,	JU U JU	-0	GC Limits @95		IT al

Dimension-8 transverse parameters f_{Ti}

FRN

Summary

- A lot of work has been done by CMS in the last years to understand the SM to ever higher precision
 - Known QCD and EW processes have been studied in greater detail
 - Our measurements benefit from (and drive) the advancements in theoretical calculations and MC generators
- Rare and yet-unseen processes are starting to emerge
 - First evidence and observations of rare processes, such as triboson and exclusive-boson production
- Not only understanding the SM, but searching for new physics
 - Increasing sensitivity to anomalous gauge boson couplings
- In 2016 the LHC delivered over 40 fb⁻¹ of data, and more is expected this year!

Bonus Slides

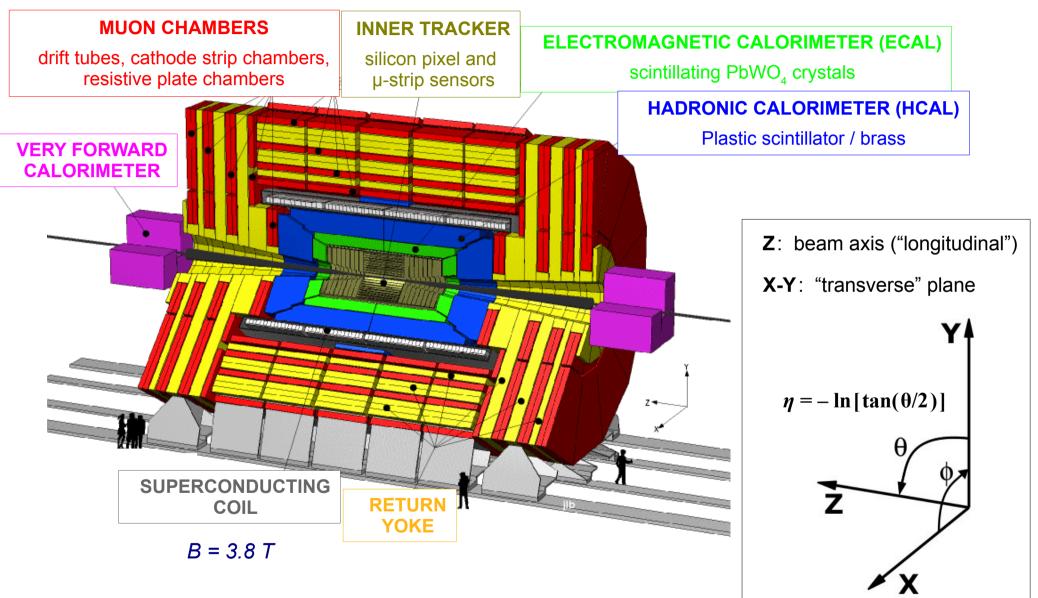
The Large Hadron Collider (LHC)

CMS and **ATLAS** two "general-purpose" detectors

⇒ cross-check of results!

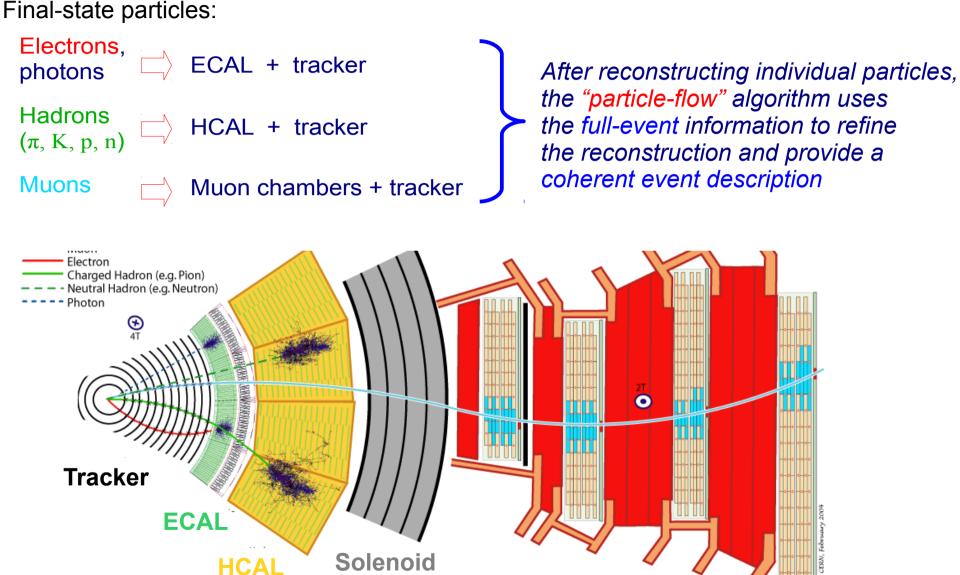
The LHC accelerates and collides proton beams

 center-of-mass energy of 7 – 8 TeV (2011-12)


 \Rightarrow high-mass particles O(TeV)!

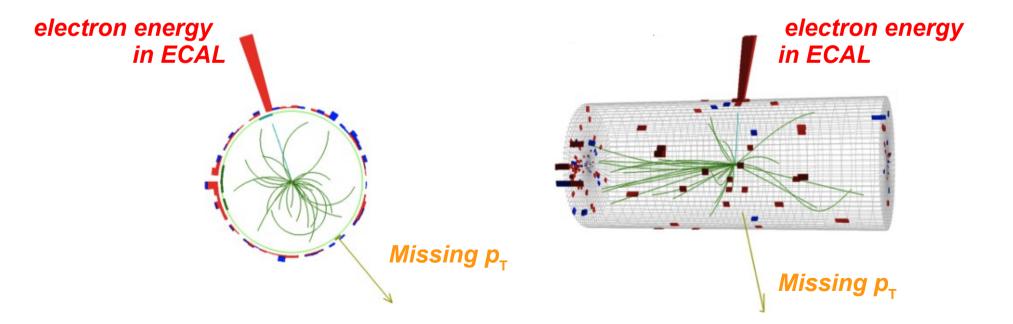
- instantaneous luminosity up to 7.5 × 10³³ cm⁻²s⁻¹ (2012)
 - \Rightarrow rare processes!
- machine rate 40 MHz, but collision rate ~1 GHz (pileup)
 - ⇒ need for a trigger system to reduce the rate to an acceptable level: ~400 Hz (2012)

The Compact Muon Solenoid (CMS)



March 9, 2017

Event Reconstruction at CMS



Muon chambers

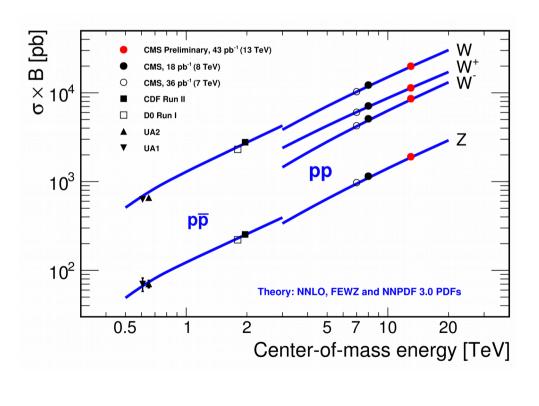
Missing Transverse Energy (MET)

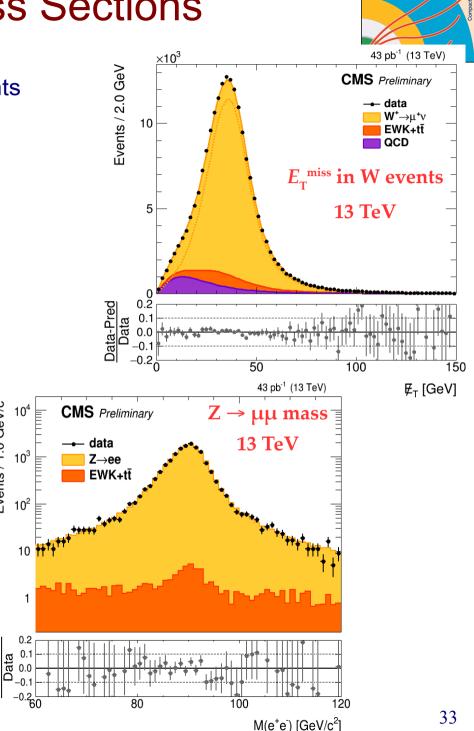
- Undetectable particles (neutrinos, ...?...) can be measured collectively as an imbalance in the transverse momentum of all detected particles
 - initial state: two partons of unknown longitudinal momentum
 and with negligible transverse momentum
 - *final state*: collision products must balance among themselves in the transverse plane no constraints along the beam axis
 - ➔ missing transverse momentum (or energy):

momentum

 $\vec{p}_{\mathrm{T}}^{\mathrm{miss}} = -\sum \vec{p}_{\mathrm{T}}^{i}$, $E_{\mathrm{T}}^{\mathrm{miss}} = \left| \vec{p}_{\mathrm{T}}^{\mathrm{miss}} \right|$

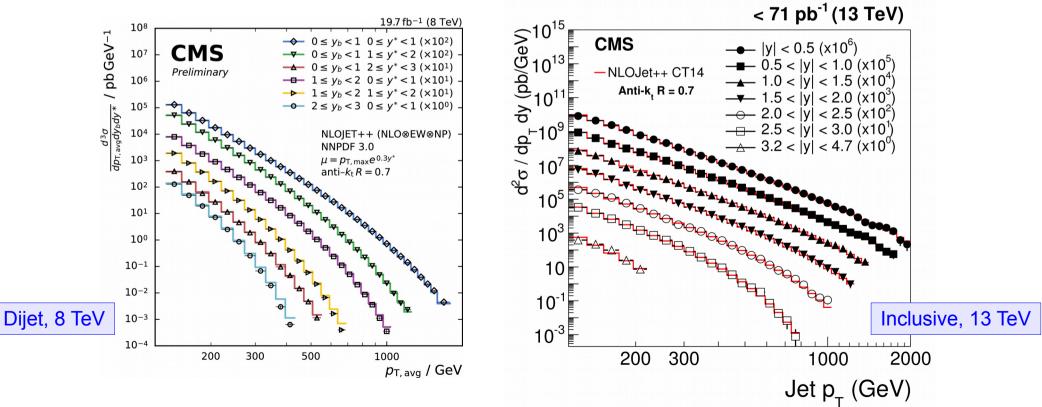
conservation


Single W/Z Cross Sections


Events / 1.0 GeV/c²

Data-Pred

- Inclusive W and Z cross section measurements at c.o.m. energies of 7, 8, and 13 TeV
 - Precision tests of theoretical predictions \Rightarrow good agreement with NNLO
 - Standard candles used for multiple purposes • (e.g. detector calibration, efficiencies)

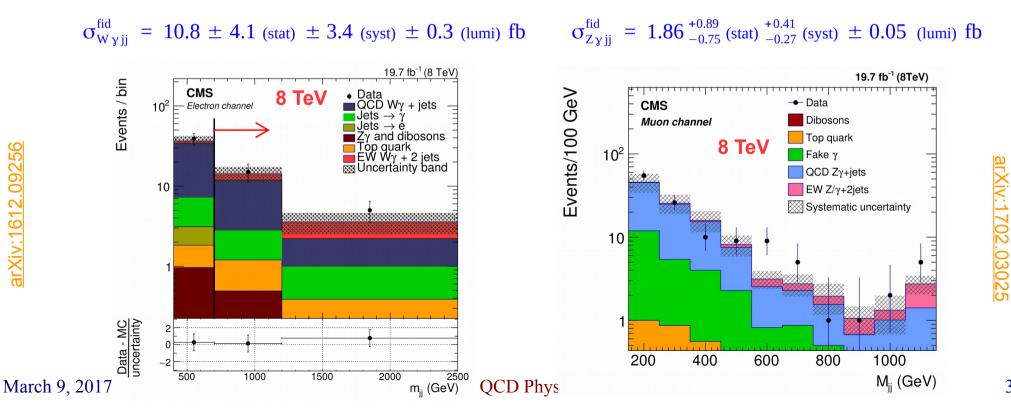


•

Jet Production

- Double- and triple-differential (di)jet cross section vs jet p_T and y ($|y_1 + y_2|$, $|y_1 y_2|$)
 - measurement covers ~7 orders of magnitude, for jet $p_{\rm T}$ up to ~ 2 TeV
 - anti- $k_{\rm T}$ clustering algorithm, R = 0.7 or $0.4 \rightarrow$ test radiative and nonperturbative effects
 - compared with NLO QCD predictions + NLO EW + nonperturbative effects
 - very good agreement over most of the phase space

D. Trocino – Electroweak and QCD Physics at CMS – La Thuile 2017



arXiv:1612.09256

Electroweak Diboson Production

- $W\gamma + 2$ jets and $Z\gamma + 2$ jets produced via vector boson scattering (VBS) ٠
 - Select events with one (two) electron(s) or muon(s), plus VBS topology requirements
 - Main background: QCD $W\gamma + 2$ jets and $Z\gamma + 2$ jets production •
 - Normalization from low M_{ii} region
- Signal significance: 2.7σ for $W\gamma jj$, 3.0σ for $Z\gamma jj$
- Measured cross sections in agreement with LO predictions

35