Short distance neutrino Oscillations with boreXino: SOX

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, March 6th –March 11th 2017 Barbara Caccianiga-INFN Milano (on behalf of the Borexino/SOX collaboration)

Borexino and SOX Collaborations

- Why sterile neutrino? Experimental hints;
- How can we search for sterile v?;
- SOX: Short Distance neutrino Oscillations with boreXino;

v_e , anti- v_e	DISAPPE	ARANCE
---------------------	---------	--------

v_e , anti- v_e APPEARANCE

Reactor anomaly ~2.5 \sigma

Re-analisys of data on antineutrino flux from reactor short-baseline (L~10-100 m) shows a small deficit of R=0.943 ±0.023 *G.Mention et al, Phys.Rev.D83, 073006* (2011), *A.Mueller et al.* Phys.Rev.C **83**, 054615 (2011);

Gallex/SAGE anomaly ~3σ

Deficit observed by Gallex in neutrinos coming from a ⁵¹Cr and ³⁷Ar sources

 $R = 0.76^{+0.09}_{-0.08}$

C. Giunti and M. Laveder, Phys.Rev. C83, 065504 (2011), arXiv:1006.3244 [hep-ph].

Accelerator anomaly ~3.8 \sigma

Appearance of anti- v_e in a anti- v_μ beam (LSND). A.Aguilar et al. LSND Collaboration Phys.Rev.D 64 112007 (2001).

Confirmed by miniBooNE (which also sees appearance of v_e in a v_μ beam) A.Aguilar et al. (MiniBooNE Collaboration) Phys.Rev.Lett. 110 161801 (2013)

These experimental results are inconsistent with oscillations in the 3 neutrino scenario; In fact they would require a value of $\Delta m^2 \sim 1 \text{ eV}^2$, much larger than Δm_{12}^2 , Δm_{13}^2

Need to introduce one (or more) neutrino(s): the sterile neutrino

In the (3+1) scenario,

 $\Delta m_{41}^{2}, \qquad \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix} \qquad \Delta m_{21}^{2} << \Delta m_{31}^{2} << \Delta m_{41}^{2} \\ |U_{e4}|^{2}, |U_{\mu 4}|^{2}, |U_{\tau 4}|^{2} << 1 \quad |U_{s4}|^{2} \cong 1$

In the (3+1) scenario,

 Δm_{41}^2 ,

$$\begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix} \longrightarrow \begin{bmatrix} P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2} 2\theta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right) \\ P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^{2} 2\theta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right) \end{bmatrix}$$

How can we search for sterile neutrinos?

These experimental anomalies deserve indipendent confirmation or disproval

1) Look for disappearance of v_e emitted by the source;

2) Look for oscillation waves within the detector volume (oscillometry); In order to be sensitive to $\Delta m^2 \sim 1 \text{ eV}^2$

- Need a source with E ~ 1- 10 MeV
- Located at a distance L ~ 1-10 m

How can we search for sterile neutrinos?

These experimental anomalies deserve indipendent confirmation or disproval

Advantages (compared to reactors or accelerator experiments)

- Intrinsecly pure v_e (or anti- v_e) beam;
- Neutrino spectrum can in general be measured more precisely than in reactors or accelerators;
- Neutrino cross-sections in the ~MeV region known more precisely than at ~ GeV;
- Neutrino flux known with high precision (at ~% level);

How can we search for sterile neutrinos?

These experimental anomalies deserve indipendent confirmation or disproval

Disadvantages (compared to reactors or accelerator experiments)

- Sources decay! Limited data-taking time..
- Smaller neutrino flux;
- Both a technical and burocratical challenge: need authorizations for transportation, importation, handling, usage, storage, disposal;

The SOX idea

SOX: Short distance v_e Oscillations with boreXino

Borexino in a nut-shell

- It is located at the Laboratori Nazionali del Gran Sasso;
- It was conceived to study solar neutrinos;
- Started taking data in 2007;
- Still taking data for solar v;

Borexino results

- BX has performed a complete study of the solar neutrino spectrum
- geo-neutrinos;
- Limits on rare processes;

MOST RECENT BX RESULTS ON Solar v -Phys.Rev. D 89, 112007 (2014), -Nature 512 (2014) 383-386; Geo-v -Phys.Rev. D 92, 031101(R) (2015) Rare processes -PRL 115, 231802 (2015) -Astrop. Phys. 86 (2017) 11–17

SOX: Short distance v_e Oscillations with boreXino

Core of the detector: 300 tons of scintillator (pseudocumene+PPO)

2212 photomultiplier tubes pointing towards the center to view the light emitted by the scintillator;

PIT under the detector where the source will be located.

SOX: the tunnel under the detector

SOX: the ¹⁴⁴Ce-¹⁴⁴Pr anti-v source (see PRL 107, 201801 (2011))

Source characteristics: anti-v source, E_v <2.99 MeV τ =411 d

Required source activity ~100 kCi (3.7 x 10¹⁵ v/sec)

ADVANTAGES

- detecting reaction is \overline{v} + p \rightarrow n + e⁺ very little background;
- Long lifetime;

DISADVANTAGES

• high energy γ_s (E=2.2 MeV) emitted by the source are difficult to handle;

SOX: source production in Mayak

SOX: source shielding

The source capsule must be contained in a tungsten shielding to stop gamma-rays

Already in Gran Sasso

SOX: source trasportation

Complicated transportation logistic in order to comply with safety regulations for transport of radioactive material:

- **Container**: TN MTR 24t container for nuclear fuel;
- Transportation: Train + dedicated boat+ truck
- Time~ 3 weeks
- Loss of activity~ 5%
 - ¹⁴⁴Ce source ready for shipment to Gran Sasso between Jan and March 2018;
 - Transportation to Gran sasso by April 2018;

SOX: logistic in Gran Sasso

SOX: logistic in Gran Sasso

Short distance neutrino oscillations with Borexino - Barbara Caccianiga (INFN-Milano)

The physics with SOX

Two types of analysis

- Rate analysis: look for a deficit in the total anti-neutrino number (the activity of the source must be known very precisely!)
- Shape analysis: look for anomaly in the distribution of events as a function of E and L (distance from the source)

Short distance neutrino oscillations with Borexino - Barbara Caccianiga (INFN-Milano)

The sensitivity depends on some critical parameters of the experiment:

- **a**: activity of the source (the higher the better);
- **t**: time of data-taking (it is constrained by the source lifetime);
- $\sigma_{\rm F}$ and $\sigma_{\rm I}$: capability to reconstruct energy E and position L of events;
- σ_{Δ} : precision on determining the source activity (two calorimeters);
- Precise knowledge of the source Ce-Pr electron/neutrino spectrum; ۲
- Precise knowledge of detector efficiency;

Nominal conditions of SOX

- a =100kCi 150 kCi (contract with Mayak)
- t = 1.5 years;
- σ_E=5% (@ 1MeV) σ_L=10 cm (@1MeV) σ_A=1%

SOX: sensitivity to sterile neutrinos

In the hypothesis of 'null result", SOX will be able of excluding a region in the oscillation parameter space;

$$L_{osc}(m) = \frac{E(MeV)}{1.27\Delta m^2 (eV^2)}$$

•
$$\Delta m^2 > 5 \text{ eV}^2 \text{ L}_{\text{osc}} << \sigma_x$$

P~1/2sin²2 θ ;

- Δm² <0.1 eV² L_{osc} >> detector dimensions P~ Δm²sin²2θ;
- 0.1 <∆m² <5 eV² best sensitivity window;

SOX will be able of excluding the region currently allowed by the anomalies

Short distance neutrino oscillations with Borexino - Barbara Caccianiga (INFN-Milano)

SOX: the importance of knowing the source activity

- Knowing precisely the source activity is crucial for the "rate-only" analysis;
- The source activity will be measured with a calorimetric method: the precision of the measurent will be 1% or better;

Short distance neutrino oscillations with Borexino - Barbara Caccianiga (INFN-Milano)

SOX: the importance of knowing the source activity

SOX Calorimeters

 $\frac{\Delta \dot{Q}}{\dot{Q}} \le 0.01$ Steady state equation

$$\dot{Q}_{source} = \dot{m}C(T_{in} - T_{ext}) + \dot{Q}_{cond}$$

- T measured with Calibrated Platinum Thermometers (accuracy < 10⁻³);
- C for pure water known better than 10⁻⁴;
- Water mass flow measured with Coriolis flowmeters (accuracy ±10⁻³);
- Heat losses due to conduction, radiation and convection must be minimized

$$\dot{Q}_{source} = 2KW; \quad \dot{m}_{water} = 0.01Kg/s \rightarrow \Delta T = 48^{\circ}C$$

SOX: the importance of knowing the source activity

Two calorimeters to have independent measurements of the source activity:

- Preliminary tests with a source mockup have shown that the design precision of 1% (or even better) is reachable;
- One of the two calorimeters already @LNGS; the other will arrive in April 2017;

TUM/Genova calorimeter

CEA calorimeter

SOX: the importance of knowing the source spectrum

- This measurement is crucial for different reasons:
 - 1. conversion $Q \rightarrow$ activity;
 - conversion activity → number of v above threshold;
 - 3. oscillometric analysis

Two setups to independently measure the spectrum

CEA β-spectrometer

TUM β-spectrometer installed in Saclay:

A DFG-ANR proposal is being submitted to use Perkeo III instrument

Conclusions

- SOX is getting ready to start data-taking:
 - The contract with Mayak for the source production has been signed;
 - The site is ready (Borexino detector, Clean Room..);
 - The tungsten shield has been produced and delivered to Gran Sasso to perform some tests;
 - The two calorimeters are under commissioning;
 - A complete test of the procedures for the installation of the source underneath the detector is planned for this summer (with a source mockup);
 - SOX will start taking data in spring 2018 and will be able of covering most of the currently allowed region in the oscillation parameter space;

Backup slides

Main ¹⁴⁴Pr branch: ground state $0^- \rightarrow 0^+$ first non-unique forbidden transition.

Shape of energy spectra:

- W: total energy of electron
- W_0 : end point
- *p*: electron momentum
- $C(W) = 1 + a \cdot W + b/W + c \cdot W^2$