# **Observation of the decay** $\overline{E_b} \rightarrow pK^-K^-_{arXiv:1612.02244}$ Phys. Rev. Lett. 118 (2017) 071801





**On behalf of the LHCb Collaboration** 



XXXI Rencontres de Physique de la Vallée d'Aoste, La Thuile, 7th March 2017

#### Charmless hadronic decays

- Decays proceed via  $b \rightarrow u$  and  $b \rightarrow d$  or  $b \rightarrow s$  transitions at tree and loop level respectively.
- Large local CP asymmetries  $(\mathcal{A}_{CP})$  observed in  $B^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}$ ,  $B^{\pm} \to K^{+}K^{-}\pi^{\pm}$ ,  $B^{\pm} \to \pi^{+}\pi^{-}K^{\pm}$  and  $B^{\pm} \to K^{+}K^{-}K^{\pm}$  decays. Phys. Rev. Let. 111 (2013) 101801

Phys. Rev. Let. 111 (2013) 101801 Phys. Rev. Let. 112 (2014) 011801 Phys. Rev. D90 (2014) 112004



#### Charmless hadronic decays of b-baryons



#### Charmless hadronic decays of $\Xi_b^-$ and $\Omega_b^-$ baryons

- No charmless decays of strange-beauty baryons have been observed until now.
- In this analysis, we conduct search for Ξ<sup>-</sup><sub>b</sub> and Ω<sup>-</sup><sub>b</sub> baryon decays to charmless hadronic final states i.e. Ξ<sup>-</sup><sub>b</sub>(Ω<sup>-</sup><sub>b</sub>) → ph<sup>-</sup>h<sup>-</sup>.
- Topology of these baryon decays similar to that of previously mentioned  $B^{\pm}$  decays. Interesting to see if large CP violation effects are also seen in b-baryon decays.
- No experimental or theoretical results on 𝔅(Ξ<sup>-</sup><sub>b</sub>(Ω<sup>-</sup><sub>b</sub>) → ph<sup>-</sup>h<sup>-</sup>) existed prior to this analysis.

#### Charmless hadronic decays of $\Xi_b^-$ and $\Omega_b^-$ baryons

- The  $\Xi_b^- \to pK^-K^-$  decay is Cabibbo-suppressed at tree (b  $\to$  u) and loop (b  $\to$  s) level.
- The  $\Omega_b^- \to pK^-K^-$  and  $\Xi_b^- \to pK^-\pi^-$  proceed at tree and loop level via  $b \to u$  and  $b \to d$  transitions.
- Other decays i.e.  $\Xi_b^-(\Omega_b^-) \to p\pi^-\pi^-$  and  $\Omega_b^- \to pK^-\pi^-$  are expected to be even further suppressed.
- Compared to  $\Xi_b^-$  baryons, fewer  $\Omega_b^-$  baryons are produced in the pp collisions but relative fragmentation fractions, f, are not measured.



#### The Large Hadron Collider beauty (LHCb) Experiment

- Forward spectrometer (2 <  $\eta$  < 5) optimized for band c- hadron physics.
- The b-baryons are produced at unprecedented quantities at LHCb. Most precise measurements of mass and lifetime of  $\Xi_b^0$ ,  $\Xi_b^-$  and  $\Omega_b^-$  were made.

Phys. Rev. Lett. 113 (2014) 032001 Phys.Rev.Lett. 113 (2014) 242002 Phys. Rev. D93 (2016) 092007

- Excellent performance:
  - Impact parameter (IP) resolution:  $\sigma_{IP} \approx 20 \ \mu m$  (at high  $p_T$ ).
  - Decay time resolution:  $\sigma_t \approx 50 \, fs$ .
  - Momentum resolution:  $\frac{\sigma_p}{p} \approx 0.5 0.8 \%$  (p < 100 GeV/c)
  - Particle Identification (PID):  $\epsilon(K) \approx 95\%$ , Mis-ID  $\epsilon(\pi \rightarrow K) \approx 5\%$  (p < 100 GeV/c).



#### Analysis Strategy

• Measure the relative product of branching fraction and fragmentation fraction with  $B^- \rightarrow K^+ K^- K^-$  as the normalisation mode.

$$R_{\Xi_{b}^{-}(\Omega_{b}^{-}) \to ph^{-}h^{\prime-}} = \underbrace{\frac{f_{\Xi_{b}^{-}(\Omega_{b}^{-})}}{f_{u}}}_{B(B^{-} \to K^{+} K^{-} K^{-})} = \underbrace{\frac{N(\Xi_{b}^{-}(\Omega_{b}^{-}) \to ph^{-}h^{\prime-})}{N(B^{-} \to K^{+} K^{-} K^{-})}}_{N(B^{-} \to K^{+} K^{-} K^{-})} \times \underbrace{\frac{\epsilon(B^{-} \to K^{+} K^{-} K^{-})}{\epsilon(\Xi_{b}^{-}(\Omega_{b}^{-}) \to ph^{-}h^{\prime-})}}_{\epsilon(\Xi_{b}^{-}(\Omega_{b}^{-}) \to ph^{-}h^{\prime-})}$$

- We use 3 fb<sup>-1</sup> of data collected by LHCb during 2011 and 2012.
- Conduct signal selection to improve the purity of the sample and obtain the efficiency of the selection.
- Charmless signal regions were not inspected until the selection was finalised.
- To extract the signal yield conduct a simultaneous unbinned maximum likelihood fit to the invariant mass of each  $h^-h^-p$  final state.

#### Signal Selection and Efficiency

- Online selection, performed with standard LHCb trigger algorithms, and offline event selection was performed to select signal-like candidates. J. Instrum. 8, P04022 (2013)
- Neural networks were trained to reduce the combinatorial background.
- Particle identification (PID) criteria were used to reduce the contribution from backgrounds that arise due to the mis-identification of one or more final state tracks.
- For the normalisation mode, contribution from  $B^- \to D^0(\to K^+K^-)K^-$  was vetoed and for signal modes, possible contribution from the as yet unobserved mode of  $\Xi_b^- \to \Xi_c^0(\to ph^-)h^-$  was vetoed.
- The efficiency of signal selection was obtained from simulation except for efficiency of PID requirement which is obtained using a data-driven method. LHCb-PUB-2016-021
- Variation of efficiency over phase-space introduced by the acceptance and signal selection was accounted for in the BF ratio calculation.

#### Signal Yield Extraction

- Shape parameters of PDF fixed either to known values or determined from simulation.
- Some data-simulation differences are determined from the normalization mode and used in signal shape.
- Cross-feed backgrounds arise from mis-identification of final state tracks rates constrained from mis-ID probabilities determined from data control samples.



#### Signal Yield Extraction

- The partially reconstructed background consists of  $\Xi_b^- \to N(p\pi^0)h^-h^-$ .
- No evidence of  $\Xi_b^- \to p\pi^-\pi^-$  and  $\Omega_b^- \to ph^-h^-$  decays .



#### Evaluation of Systematic Uncertainty

- Sources of systematic uncertainties arising from fit model and efficiency are investigated.
- For modes observed with significance >  $3\sigma$ , the dominant source of systematic uncertainty arises due to the mis-match of  $\Xi_b^-$  production kinematics in simulation and data.
- For modes observed with significance  $< 3\sigma$ , the dominant source of systematic uncertainty arises from variation of the efficiency over the phase space.
- We also measure  $\frac{\mathfrak{B}(\Xi_b^- \to pK^-\pi^-)}{\mathfrak{B}(\Xi_b^- \to pK^-K^-)}$  and  $\frac{\mathfrak{B}(\Xi_b^- \to p\pi^-\pi^-)}{\mathfrak{B}(\Xi_b^- \to pK^-K^-)}$ . For these, the dominant source of systematic uncertainty arises from the residual differences between data and simulation in the trigger, fit model and for the  $\Xi_b^- \to p\pi^-\pi^-$  mode from efficiency variation across the phase space.

Results

arXiv:1612.02244 Phys. Rev. Lett. 118 (2017) 071801

Observation at 8.7  $\sigma$ 

$$R_{\Xi_b^- \to pK^-\pi^-} = (259 \pm 64(stat) \pm 49(syst)) \times 10^{-5}$$

 $R_{\Xi_{h}^{-} \to pK^{-}K^{-}} = (265 \pm 35(stat) \pm 47(syst)) \times 10^{-5}$ 

$$\frac{\mathfrak{B}(\Xi_b^- \to pK^-\pi^-)}{\mathfrak{B}(\Xi_b^- \to pK^-K^-)} = 0.98 \pm 0.27 \ (stat) \pm 0.09 \ (syst)$$

 $R_{\Xi^- \to n\pi^-\pi^-} < 147 (166) \times 10^{-5}$ 

Evidence at 3.4  $\sigma$ 



D

$$\frac{\mathfrak{B}(\Xi_{b}^{-} \to p\pi^{-}\pi^{-})}{\mathfrak{B}(\Xi_{b}^{-} \to pK^{-}K^{-})} < 0.56 \ (0.63)$$

$$R_{\Omega_{b}^{-} \to pK^{-}K^{-}} < 18 \ (22) \times 10^{-5}$$

$$R_{\Omega_{b}^{-} \to pK^{-}\pi^{-}} < 51 \ (62) \times 10^{-5}$$

$$R_{\Omega_{b}^{-} \to p\pi^{-}\pi^{-}} < 109 \ (124) \times 10^{-5}$$

Upper limits at 90 (95) % confidence level

#### Resonance contributions in $\Xi_h^- \to pK^-K^-$



arXiv:1612.02244 Phys. Rev. Lett. 118 (2017) 071801

- Possible contributions from  $\Lambda(1405)[J^P = \frac{1}{2}]$  and  $\Lambda(1520)[\frac{3}{2}]$ .
- Possible contributions from  $\Lambda(1670)[\frac{1}{2}]$ ,  $\Lambda(1690)[\frac{3}{2}]$  and other broad states.

• Possible contribution from  $\Lambda(1830)[\frac{5}{2}^{-}]$ ,  $\Lambda(1890)[\frac{3}{2}^{+}]$  and other broad states.

Abhijit Mathad

#### Conclusion

- At LHCb, we now not only observe charmless decay of  $\Lambda_b^0$  baryon but also charmless decays of  $\Xi_b^-$  baryon.
- No observation of charmless decays of  $\Omega_b^-$  baryons yet.
- Adding Run II data, good prospects to probe the dynamics of charmless  $\Xi_b^-$  decays and to conduct CPV searches.
- With the LHCb upgrade detailed studies of these decay modes will become possible.
- Theoretical predictions for CPV in b-baryon decays are needed to confront the increasingly precise measurements.

## Backup

### $m(K^-p)$ distribution from $\Lambda_b^0 \to J/\psi pK^-$

