

Differential cross-section measurements of top-quark-pair production in the dilepton final state at 13 TeV with the ATLAS experiment

Abigail O'Rourke on behalf of the ATLAS collaboration

March 10th La Thuile 2017

Motivation

- Cross-section and kinematics of top quarks important test of SM
- Top is usually a large background for searches for new physics
- Important input for tuning simulations
- First ATLAS measurement in dilepton channel of top p_T

Analysis

- Measurements of top-quark pair differential cross-sections using final states with electrons and muons
- Using 3.2 fb⁻¹ of data collected by ATLAS in 2015
- Measuring top variables: p_T & lyl and tt variables: p_T, lyl & M

- Dileptonic tt decay:
 - Look at eµ channel clean signal, low background
- Select exactly two oppositely charged leptons (1 electron, 1 muon) (p_T > 25 GeV)

g_0000(

h

- At least 2 jets required to reconstruct the tt system ($p_T > 25$ GeV)
- Require at least 1 b-tagged jet (77% efficiency)

Background contributions

- Same final state: *Wt* single top, Z+jets, diboson
- Fake: tt (lepton + jets channel), ttV, W + jets, t-channel single top

Reconstruction: Neutrino weighting

Kinematic distributions of top variables

arXiv:1612.05220

Unfolding: migration matrices

Abigail O'Rourke

0.9

-0.8

0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

__0

 $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$

0.66

0.23

0.05

0.01

850-

1500

0.20

0.47

0.16

0.04

650-850

Systematic uncertainties

General method:

unfold shifted sample with nominal response matrix, compare to nominal sample

Largest uncertainties

- Jet related: significant uncertainties in both absolute and normalised
- Luminosity: large for absolute cross-sections (~2%)
- PDFs: use PDF4LHC15 prescription, with extrapolation of CT10 \rightarrow CT14
- Modelling uncertainties:
 - ★ ISR/FSR: Powheg+Pythia6 with high and low radiation settings
 - * NLO generator: Powheg+Herwig++ vs aMC@NLO+Herwig++
 - ★ Parton shower: aMC@NLO+Herwig++ vs aMC@NLO+Pythia8

baseline sample unfolded using alternative sample

Systematic uncertainties

Fractional sizes of uncertainties grouped by type

— symmetric - - - asymmetric

Results: normalised differential cross-sections

Powheg+Pythia6 Powheg+Herwig++ Powheg+Pythia8

Sherpa aMC@NLO+Herwig++ aMC@NLO+Pythia8

Results: absolute differential cross-sections

Compare high and low radiation settings in Powheg

Results

Comparison of generators

• Calculate χ^2 and determine *p*-values using NDF for normalised cross-sections

- Most generators agree within experimental uncertainties
- Powheg+Herwig++ differs significantly in both p_T(t) and m(tt)

Results

• Most generators agree with the data

• Nothing conclusive across all variables

	<i>p</i> _T	(t)	y([t)	p_{T}	$(t\bar{t})$	y (1	$t\bar{t}) $	<i>m</i> ((tt)
Predictions	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value
Powheg+Pythia6	5.2/4	0.27	0.5/3	0.92	5.5/6	0.48	0.6/2	0.74	3.9/4	0.42
Powheg+Pythia8	4.6/4	0.33	1.3/3	0.73	5.1/6	0.53	0.0/2	1.00	5.7/4	0.22
Powheg+Herwig++	14.6/4	0.01	1.4/3	0.71	4.1/6	0.66	1.0/2	0.61	12.0/4	0.02
aMC@NLO+Herwig++	2.0/4	0.74	1.3/3	0.73	0.6/6	1.00	0.2/2	0.90	0.9/4	0.92
aMC@NLO+Pythia8	3.6/4	0.46	0.6/3	0.90	10.7/6	0.10	0.1/2	0.95	2.7/4	0.61
Sherpa	3.8/4	0.43	0.8/3	0.85	0.7/6	0.99	0.0/2	1.00	2.3/4	0.68
Powheg+Pythia6 High Rad	7.8/4	0.10	0.6/3	0.90	0.9/6	0.99	0.4/2	0.82	3.8/4	0.43
Powheg+Pythia6 Low Rad	5.5/4	0.24	0.8/3	0.85	9.6/6	0.14	0.8/2	0.67	4.5/4	0.34

Conclusions

Differential cross-sections

- Measurements of top-quark pair differential cross-sections using eµ events
- Measured differential cross-sections compared to predictions of NLO generators matched to parton showers
- Results consistent with all models within uncertainties
- Largest uncertainties arise from signal modelling and jet uncertainties

back up

- Requiring tī system reconstruction increases percentage of tī events
 —> preferentially selects tī events over background
- Data/MC agreement is within total uncertainties

Process	Signal 1	region	Signal region + NW		
$Z/\gamma^* ightarrow au^+ au^-$	22	±9	10	± 8	
Diboson	44	±4	17	± 2	
Fake lepton	200	± 60	150	± 50	
Wt	860	± 60	480	± 40	
tī	15 800	± 900	13 300	± 800	
Expected	17 000	± 900	13 900	± 800	
Observed	17 501		14 387		

Kinematic distributions

i = bin number

Results

X	$\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X} \left[\frac{\mathrm{pb}}{\mathrm{GeV}}\right]$	$\frac{1}{\sigma_{t\bar{t}}}\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X}\left[\frac{1}{\mathrm{GeV}}\right]$	Stat. (abs.)	Stat. (norm.)	Syst. (abs.)	Syst. (norm.)
$p_{\rm T}(t)$ [GeV]			[%]	[%]	[%]	[%]
0-70	7.1	0.371	± 1.8	± 1.7	+11 -11	+4 -3.2
70 - 150	9.9	0.515	± 1.3	± 1.2	+10 -11	+2.3 -2.7
150 - 250	4.61	0.239	± 1.8	± 1.7	+7 -8	+2.1 -2.0
250 - 400	0.97	0.051	± 3.4	± 3.3	+7 -9	+10 -11
400 - 1000	0.042	0.0022	± 10	± 9	+40 -40	+40 -40
$p_{\rm T}(t\bar{t})$ [GeV]						
0-30	9.6	0.99	± 2.2	± 2.0	+15 -16	+12 -13
30 - 70	8.6	0.88	± 1.9	± 1.7	+8 -8	+9 -9
70 - 120	3.6	0.368	± 3.0	± 2.7	+10 -11	+8 -9
120 - 180	0.139	0.143	± 5	± 5	+24 -24	+19 -18
180 - 250	0.064	0.066	± 7	± 6	+40 -40	+32 -32
250 - 350	0.023	0.024	± 10	± 9	+24 -24	+30 -19
350 - 1000	0.0017	0.0018	± 14	± 13	+50 -50	+40 -40
$m(t\bar{t})$ [GeV]						
0-450	0.94	0.097	± 1.8	± 1.6	+12 -13	+5 -5
450 - 650	1.76	0.183	± 2.0	± 1.9	+8 -9	+2.8 -3.0
650 - 850	0.57	0.059	± 4	± 3.3	+10 -12	+8 -8
850 - 1500	0.111	0.0115	± 6	± 5	+11 -11	+14 -14
X	$\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X}$ [pb]	$\frac{1}{\sigma_{t\bar{t}}} \frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X}$	Stat. (abs.)	Stat. (norm.)	Syst. (abs.)	Syst. (norm.)
$ y(t\bar{t}) $			[%]	[%]	[%]	[%]
0.0 - 0.8	7.7	0.797	± 1.3	± 1.1	+8 -9	+1.8 -1.8
0.8 – 1.6	3.9	0.400	± 2.2	± 2.0	+9 -10	+3.4 -3.4
1.6 - 4.0	0.170	0.0176	± 7	± 7	+13 -13	+8 -8
y(t)						
0.0 - 0.5	12.9	0.665	± 1.5	± 1.4	+8 -10	+1.0 -1.3
0.5 - 1.0	11.5	0.595	± 1.6	± 1.5	+10 -10	+2.2 -1.9
1.0 - 1.6	8.1	0.421	± 1.8	± 1.7	+8 -9	+1.4 -1.2
1.6 - 4.0	0.95	0.0489	± 2.9	± 2.7	+8 -9	+6 -6

Abigail O'Rourke

top-quark pair differential cross-sections