Some news in v physics

P. Hernandez

IFIC, Universidad de Valencia & CERN

"For the discovery of neutrino oscillations, which shows that neutrinos have mass"

SM+3 massive neutrinos: Global Fits

See also Capozzi et al, & Forero et al

Leptonic CP violation

Preference for δ > 180° driven mostly by combination of reactor/T2K, atmospheric add positively

Absolute mass scale

Neutrinos as light as 0.1-1eV modify the large scale structure and CMB

A new flavour perspective

Why are neutrinos so much lighter?

Why do they mix so differently ?

CKM

$$|V|_{\rm CKM} = \begin{pmatrix} 0.97427 \pm 0.00015 & 0.22534 \pm 0.0065 & (3.51 \pm 0.15) \times 10^{-3} \\ 0.2252 \pm 0.00065 & 0.97344 \pm 0.00016 & (41.2^{+1.1}_{-5}) \times 10^{-3} \\ (8.67^{+0.29}_{-0.31}) \times 10^{-3} & (40.4^{+1.1}_{-0.5}) \times 10^{-3} & 0.999146^{+0.000021}_{-0.000046} \end{pmatrix}$$

PMNS

3σ

			NuFIT 3.0 (2016)
$ U _{3\sigma} =$	$ \begin{pmatrix} 0.800 \to 0.844 \\ 0.229 \to 0.516 \\ 0.249 \to 0.528 \end{pmatrix} $	$0.515 \rightarrow 0.581$ $0.438 \rightarrow 0.699$ $0.462 \rightarrow 0.715$	$\begin{array}{c} 0.139 \to 0.155 \\ 0.614 \to 0.790 \\ 0.595 \to 0.776 \end{array}$

A new physics scale ?

Neutrinos are different...they can have majorana masses:

$$-\mathcal{L}_{\text{Majorana}} = \bar{\nu}_L m_\nu \nu_L^c + h.c. \quad \leftrightarrow \bar{L}\tilde{\Phi} \; \alpha \; \tilde{\Phi}L^c + h.c.$$

What lies beyond Weinberg's operator?

Could be $\Lambda >> v...$ the standard lore (theoretical prejudice ?)

$$\begin{array}{c} \Lambda = M_{\rm GUT} \\ \lambda \sim \mathcal{O}(1) \end{array} \right\} \quad m_{\nu} \checkmark$$

To avoid fine-tunning

The new scale is stable under radiative corrections due to Lepton Number symmetry but the EW is not!

What lies beyond Weinberg's operator?

Could be $\Lambda \sim v$?

Yes!

 λ in front of Weinberg operator might be naturally different to SM Yukawa couplings

Resolving Weinberg's operator at tree level

 $\lambda \sim O(Y^2)$

L

 $\lambda \sim O(Y \mu/M_{\Lambda})$

 $\lambda \sim O(Y^2)$

Why low-scale ($M_N \leq v$) seesaw ?

Testable, falsifiable...

"Once you eliminate the impossible, whatever remains, no matter how improbable/unnatural, must be the truth."

Why low-scale ($M_N \leq v$) seesaw ?

Testable, falsifiable...

In this talk two examples:

- matter-antimatter asymmetry
- leptonic CP violation

Minimal model of neutrino masses: SM+right-handed neutrinos

$$\mathcal{L}_{\nu} = -\bar{l}Y\tilde{\Phi}N_R - \frac{1}{2}\bar{N}_RMN_R + h.c.$$

Minkowski; Yanagida; Glashow; Gell-Mann, Ramond Slansky; Mohapatra, Senjanovic...

Type I seesaw models

 $n_R = 3$: 18 free parameters (6 masses+6 angles+6 phases) out of which we have measured 2 masses and 3 angles...

 M_N

Type I seesaw models

Phenomenology (beyond neutrino masses) of these models depends on the heavy spectrum and the size of active-heavy mixing:

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = U_{ll} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} + U_{lh} \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix}$$

Type I seesaw models

R: general orthogonal complex matrix (contains all the parameters we cannot measure in neutrino experiments)

Strong correlation between active-heavy mixing and neutrino masses, but the naive scaling $(|U_{lh}|^2 \sim m_l/M_h)$ too naive...

Pinning down the mass

Sterile neutrinos below 100MeV can strongly modify

Big-Bang Nucleosynthesis Cosmic Microwave background Large Scale structure

Notzold, Raffelt; Barbieri&Dolgov; Kainulainen....; Dolgov, Hansen, Raffelt,Semikoz; Ruchayskiy, Ivashko;Vincent et al; PH, Kekic, Lopez-Pavon

Either they contribute too much radiation or too much matter, modifying in unacceptable ways the expansion history and/or growth of perturbations

Leptogenesis from neutrino oscillations 0.1GeV <M < 100GeV

Akhmedov, Rubakov, Smirnov

Asaka, Shaposhnikov;Shaposhnikov;Asaka, Eijima, Ishida;Canetti, Drewes, Frossard, Shaposhnikov; Drewes, Garbrecht;Shuve, Yavin;Abada, Arcadi, Domcke, Lucente; PH, Kekic, Lopez-Pavón,Racker, Rius, Salvado...

Sakharov conditions

✓ CP violation (up to 6 new CP phases in the lepton sector)

$$Y = U_{\rm PMNS}^* \sqrt{m_{\nu}} R \sqrt{M_h} \frac{\sqrt{2}}{v}$$

Casas-Ibarra

(**R**: 3 complex angles + **U**_{PMNS}: 3 phases)

✓ B+L violation from sphalerons $T > T_{EW}$

 $L_{\alpha} \oplus B + L$

(in contrast with standard leptogenesis in the decay of the heavy states: the violation of L from Majorana masses is not relevant M/T << 1)

✓ Out of equilibrium: not all the states reach thermal equilibrium before T_{EW}

ARS Leptogenesis

Akhmedov, Rubakov, Smirnov

$$\Gamma_s(T) \sim y^2 T \sim \frac{M_N m_\nu}{v^2} T \qquad \qquad H(T) = \sqrt{\frac{4\pi^3 g_*(T)}{45}} \frac{T^2}{M_P}$$

$$\frac{\Gamma_s(T_{EW})}{H(T_{EW})} \sim 5 \left(\frac{M}{1 \text{GeV}}\right) \left(\frac{m_{\nu}}{0.05 \text{eV}}\right)$$

$$y_3 < y_1, y_2$$

CP asymmetries arise in production of sterile states via the interference of CP-odd phases and CP-even phases from oscillations

High-scale leptogenesis

Fukugita, Yanagida

Low-scale leptogenesis

PH, Kekic, López-Pavón, Racker, Salvadó 1606.06719

Bayesian posterior probabilities (using nested sampling Montecarlo Multinest)

$$\mathcal{L} = -\left(\frac{Y_B(\text{param}) - Y_B^{\text{obs}}}{\sigma_{Y_B}}\right)^2$$

Use Casas-Ibarra parametrization: fix light neutrino masses and mixings to the best fit oscillation points (IH/NH) and vary

$$R(\theta + i\gamma); \ U_{PMNS}(\delta,\phi_1); M_1, M_2$$

Flat priors in:

$$\theta = [0, \pi]; \delta = [0, 2\pi]; \phi_1 = [0, 2\pi]; \gamma = [-9, 9];$$
$$\log_{10} M_1 \text{ and } \log_{10} M_2 / \log_{10} (M_2 - M_1)$$

Less fine-tunned region prefers the range of SHIP & DUNE!

Searches in rare meson decays

 $M < M_{K}$

Searches in e+e- @ Z FCCee

Golden signal: displaced vertex

Predicting Y_B in the minimal model N=2 ?

If the heavy sterile neutrinos would be within reach of SHIP to what extent can we predict the baryon asymmetry from experiment ?

It can be shown that Y_B depends sizeably on every one of the new flavour parameters !

Light sector: $U_{PMNS}(\phi_1, \delta), \Delta m^2_{atm}, \Delta m^2_{sol}$

Heavy sector: $M_1, M_2, z = \theta + i \gamma$

Heavy sector

Light sector

- Spectrum M₁, M₂ @SHIP
- Complex angle $z = \theta + i \gamma$
 - γ from mixings $|\mathbf{U}_{\alpha \mathbf{h}}|$ @SHIP $|U_{\alpha h}|^2 \propto e^{2\gamma}$

θ from heavy contribution to $\beta\beta0\nu$!

- δ from neutrinos oscillations
- ϕ_1 from light contribution to $\beta\beta0\nu$
- ϕ_1 , δ from flavour ratios $|U_{eh}|/|U_{\mu h}|$ @SHIP

Predicting Y_B in the minimal model N=2

Heavy states also contribute to the $\beta\beta$ ov amplitude...

the heavy contribution is sizeable for M_i of O(GeV)

Blennow, Fernandez-Martinez, Lopez-Pavon, Menendez; Lopez-Pavon, Pascoli, Wong; Lopez-Pavon, Molinaro, Petcov

Predicting Y_B in the minimal model N=2

Heavy states also contribute to the $\beta\beta$ ov amplitude...

the heavy contribution is sizeable for M_i of O(GeV)

Blennow, Fernandez-Martinez, Lopez-Pavon, Menendez; Lopez-Pavon, Pascoli, Wong; Lopez-Pavon, Molinaro, Petcov

Predicting Y_B in the minimal model N=2 (IH)

Light neutrino contribution

$$|m_{\beta\beta}|_{IH} \simeq \sqrt{\Delta m_{atm}^2} \left[c_{13}^2 \left(c_{12}^2 + e^{2i\phi_1} s_{12}^2 \left(1 + \frac{x^2}{2} \right) \right) - f(A) e^{2i\theta} e^{2\gamma} (c_{12} - ie^{i\phi_1} s_{12})^2 (1 - 2e^{i\delta} s_{23} \theta_{13}) \frac{(0.9 \,\text{GeV})^2}{4M_1^2} \left(1 - \left(\frac{M_1}{M_1 + \Delta M_{12}} \right)^2 \right) \right], \quad (4.13)$$
Heavy neutrino contribution

θ controls the interference of heavy and light contributions !

Predicting Y_B in the minimal model N=2 (IH)

PH, Kekic, López-Pavón, Racker, Salvadó 1606.06719

Predicting Y_B in the minimal seesaw model M~GeV

PH, Kekic, López-Pavón, Racker, Salvadó

A GeV-miracle: the measurement of the mixing to e/μ of the sterile states, neutrinoless double-beta decay and δ in neutrino oscillations have a chance to give a prediction for Y_B !

Shape can be understood from the residual error in $\boldsymbol{\delta}$

The seesaw path to leptonic CP violation

Caputo, PH, Kekic, Lopez-Pavon, Salvado 1611.05000

Flavour ratios of heavy lepton mixings strongly correlated with U_{PMNS} matrix: δ , ϕ_1

For IH:
$$\epsilon \sim e^{-\gamma} \sim \theta_{13} \sim x \equiv \sqrt{\frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}}$$

$$\begin{aligned} |U_{e4}|^2 M_1 \simeq |U_{e5}|^2 M_2 \simeq A \left[(1 + \sin \phi_1 \sin 2\theta_{12})(1 - \theta_{13}^2) + \frac{1}{2}x^2 s_{12}(c_{12} \sin \phi_1 + s_{12}) + \mathcal{O}(\epsilon^3) \right], \\ |U_{\mu4}|^2 M_1 \simeq |U_{\mu5}|^2 M_2 \simeq A \left[\left(1 - \sin \phi_1 \sin 2\theta_{12} \left(1 + \frac{1}{4}x^2 \right) + \frac{1}{2}x^2 c_{12}^2 \right) c_{23}^2 + \theta_{13}(\cos \phi_1 \sin \delta - \sin \phi_1 \cos 2\theta_{12} \cos \delta) \sin 2\theta_{23} + \theta_{13}(1 + \sin \phi_1 \sin 2\theta_{12}) s_{23}^2 + \mathcal{O}(\epsilon^3) \right], \\ + \theta_{13}^2 (1 + \sin \phi_1 \sin 2\theta_{12}) s_{23}^2 + \mathcal{O}(\epsilon^3) \right], \\ A \equiv \frac{e^{2\gamma} \sqrt{\Delta m_{atm}^2}}{4}, \end{aligned}$$

If SHIP/FCC-ee measures the heavy neutrinos and their mixings to e/μ :

Can we exclude a real U_{PMNS} matrix ie. discover leptonic CP violation in mixing ?

 $(\delta, \phi_1) \neq (0/\pi, 0/\pi)$

Leptonic CP violation 5σ CL discovery regions

(no systematic error included)

 $R_{CP} = 5\sigma CP$ -fraction =

fraction of the area of the CP rectangle which is colored

Discovery potential for leptonic CP violation in mixing

Conclusions

- The results of many beautiful experiments have demonstrated that v are the less standard of the SM particles
- A new scale $\Lambda < v$ could explain the smallness of neutrino masses without introducing stronger flavour hierarchies in the SM
- Low-scale seesaw models can seed the baryon asymmetry in the Universe and do so in a testable way (GeV region particularly interesting)
- Complementarity of different experimental approaches: $\beta\beta$ ov, CP violation in neutrino oscillations, direct searches in meson decays, colliders...

 \bullet Flavour ratios of heavy neutrino mixings strongly correlated with CP phases in U_{PMNS}

BACKUPS

Seesaw scale vs cosmology

Type I seesaw N = 2, 3 that explains neutrino masses

 $m_{lightest} > 3.2 \times 10^{-3} \, eV$

PH, M. Kekic, J. López-Pavon

Type I seesaw N =3 that explains neutrino masses

PH, M. Kekic, J. López-Pavon

vMSM: Warm Dark Matter ?

Caveat: huge lepton asymmetries are necessary, otherwise cannot produce sufficient DM !

Charged/neutral hierarchy in seesaw

Room for improvement in these searches at LHC, LFV, future colliders: but Must look for not lepton number violating processes

Outliers: SBL anomalies

T. A. Mueller et al; P. Huber

+Gallium anomaly+ MiniBOONE low-energy excess...

O(eV) sterile neutrinos ?

Two necessary smoking guns not found

Neutrino muons must disappear also $P(v_{\mu} \rightarrow v_{\mu}) = O(|U_{\mu i}|^2)$

O(eV) sterile neutrinos?

Atmospheric neutrinos must resonate into steriles when crossing the nucleus of the Earth

Chizhov, Petcov; Nunokawa et al; Barger et al; Esmaili et al;

O(eV) sterile neutrinos ?

IceCube coll. '16

O(eV) sterile neutrinos ?

Getting squeezed into inexistence...

Collin, Argüelles, Conrad, Shaevitz '16

Probably a rather bad fit to all data...

Larger Mixings ?

Reviews Atre, Han, Pascoli, Zhang; Gorbunov, Shaposhnikov; Ruchayskiy, Ivashko

Bounds only interesting if $|U_{\alpha i}|^2 \gg \frac{m_{\nu}}{M_i} \leftrightarrow R \gg 1$

• In some cases unnatural:

cancellation between tree level and 1 loop contribution to neutrino masses Lopez-Pavon, Pascoli, Wang

• But also technically natural textures:

protected by an approximate global $U(1)_L$

Example N=2: $L(N_1) = +1, L(N_2) = -1$

$$-\mathcal{L}_{\nu} \supset \bar{N}_1 M N_2^c + Y \bar{L} \tilde{\Phi} N_1 + h.c.$$

Seesaw models + approx $U(1)_L$

Wyler, Wolfenstein; Mohapatra, Valle; Branco, Grimus, Lavoura, Malinsky, Romao;Kersten, Smirnov; Abada et al; Gavela et al....many others

Neutrino masses proportional to the small breaking terms

They are all a subclass of type I seesaw models (different choices of R)

Charged/neutral hierarchy in seesaw

Room for improvement in these searches at LHC, LFV, future colliders: but Must look for not lepton number violating processes

What about mixing ?

• Anarchy for leptons ? Murayama, Naba, De Gouvea

- Discrete symmetries: e.g. tri-bimaximal mixing Harrison, Perkings, Scott not so much motivated with large θ_{13} -> understanding corrections -> + GUTs
- Minimal flavour violation and dynamical origin of Yukawas

R. Alonso, et al