

on behalf of the OPERA Collaboration

La Thuile 2017 March/6/2017

Goal of OPERA

 The OPERA experiment (Oscillation Project with Emulsion tRacking Apparatus) was designed to directly observe, for the first time in <u>APPEARANCE MODE</u>, the v_µ→v_τ oscillation in a pure v_µ beam.

 The search for direct appearance was based on revealing the short-lived τ lepton produced in ν_τ charged-current interactions

Channel	BR		
$\tau^- \to e^- \nu_\tau \overline{\nu_e}$	17.8%		
$\tau^- \to \mu^- \nu_\tau \overline{\nu_\mu}$	17.7%		
$\tau^- \rightarrow h^- \nu_\tau (n \pi^0)$	49.5%		
$\tau^- \rightarrow 3h\nu_\tau(n\pi^0)$	15.0%		

Requirements:

- High energy beam for τ production
- Long baseline for oscillation at the atmospheric scale
- High density and large target mass for statistics
- Micrometric accuracy and resolution to identify τ decays and neutrino interaction kinematics

CERN Neutrinos to Gran Sasso

- Long baseline
 (730 km from CERN to LNGS)
- $< E_{v} >$ on target ~17 GeV

✤L/E ~ 43 km/GeV

- * $\overline{\nu}_{\mu}$ contamination = 2.1%
- * v_e and \overline{v}_e contam. <1%
- * v_{τ} contamination negligible

- * Data taking from 2008 to 2012
- * # p.o.t. = $1.8 \cdot 10^{20}$
- 5603 events used for the present analysis (almost full stat.)

The OPERA detector

Target Area Brick walls+Target Tracker Scintillator strip planes

V

Spectrometer RPC+Drift Tubes

Brick Manipulating System

Underground location (10⁶ reduction of cosmic ray flux)

Emulsion Cloud Chamber

- ✤ 57 films of nuclear emulsion
- 56 lead plates (1mm thick)
- * 2 Changeable Sheets
- * 8.3 kg
- * 10 X₀
- Fast fully automated optical microscopes
- 3D track reconstruction with micrometric resolution

Main background sources

Signal topology:

Possible backgrounds:

Charmed hadron decays where muon at 1ry vtx is not identified

Eur. Phys.J. C74 (2014) 2986

Reduced by Track Follow-down procedure

v_{τ} Appearance kinematical selection OPERA

Variable	$\tau \to 1h$	$\tau \to 3h$	$\tau \to \mu$	$\tau \to e$
$z_{dec}~(\mu m)$	[44, 2600]	$<\!\!2600$	[44, 2600]	$<\!\!2600$
$p_{miss}^T \ (GeV/c)$	< 1*	$< 1\star$	/	/
$\phi_{lH}~(rad)$	${>}\pi/2\star$	${>}\pi/2\star$	/	/
$p_{2ry}^T \ (GeV/c)$	$> 0.6 (0.3)^{st}$	/	> 0.25	> 0.1
$p_{2ry} \ (GeV/c)$	>2	>3	[1, 15]	[1, 15]
$ heta_{kink} (rad)$	> 0.02	$<\!\!0.5$	> 0.02	> 0.02
$m, m_{min} \ (GeV/c^2)$	/	[0.5, 2]	/	/

Cuts marked with \star are not applied for Quasi-Elastic event

* p_{2ry}^T cut is 0.3 in the presence of γ particles associated to the decay vertex

Five v_{τ} Candidates observed

Discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance in the CNGS neutrino beam

DECAY CHANNEL	EXPECTED SIGNAL	TOTAL BACKGROUND	OBSERVED SIGNAL
τ→h	$0.52{\pm}0.10$	$0.04{\pm}0.01$	3
τ→3h	$0.73 {\pm} 0.14$	$0.17{\pm}0.03$	1
$\tau { ightarrow} \mu$	0.61±0.12	$0.004{\pm}0.001$	1
τ→e	0.78±0.16	$0.03{\pm}0.01$	0
TOTAL	2.64±0.53	0.25±0.05	5

Probability of background fluctuation = 1.1.10⁻⁷

→ absence of signal excluded with a significance of 5.1σ

Ref: Discovery of tau neutrino appearance in the CNGS neutrino beam with the OPERA experiment PRL 115 (2015) 121802

Δm^2_{23} and v_{τ} cross section estimation

OPERA

New strategy defined in order to increase the number of v_{τ} candidate \Rightarrow estimate Δm_{23}^2 (first measurement in appearance mode) and v_{τ} cross section with less statistical uncertainty

New strategy:

- Minimum bias kinematical cuts
- Multivariate analysis: Boosted Decision Tree

NEW Minimum bias selection:						
Variable	$\tau \to 1h$	$\tau \to 3h$	$ au o \mu$	au ightarrow e		
$z_{dec}~(\mu m)$	$<\!\!2600$	$<\!\!2600$	$<\!\!2600$	<2600		
$ heta_{kink} (rad)$	> 0.02	> 0.02	> 0.02	> 0.02		
$p_{2ry} \ (GeV/c)$	>1	>1	>1	>1		
$p_{2ry}^T \ (GeV/c)$	>0.15	/	>0.1	>0.1		

		7				
Channel		Expected Background			Expected Signal	Observed
	Charm	Had. re-interaction	Large μ -scat.	Total		
Total	0.52 ± 0.1	1.32 ± 0.4	0.017 ± 0.003	1.86 ± 0.5	5.88 ± 1.18	10

5 additional v_{τ} candidates

Examples of signal and background distributions for the most discriminating variables

OPERA

An interesting event with peculiar topology

Δm^2_{23} measurement Appearance mode

	Expected	xpected Expected		$\Delta m_{23}^2 \ (10^{-3} \ {\rm eV}^2)$	
	Signal	Background	Observed ν_{τ}	(68% C.L)	(90% C.L)
PRL 115 (2015) 121802	2 56	0.25	5	3 3 +0.86	[2.0.5.0]
$\Delta m^2_{23} = 2.44 \cdot (10^{-3} \text{ eV}^2)$	2.50	0.20	0	0.0 - 0.90	[2.0, 0.0]
Preliminary $\Delta m^2_{23} = 2.5 \cdot (10^{-3} \text{ eV}^2)$	5.88	1.86	10	$2.95\substack{+0.62 \\ -0.65}$	[1.98; 3.95]

(C.L. evaluated with Feldman-Cousins method)

Absolute v_{τ} cross section

Until now, v_{τ} cross section measured only by DONuT DONuT could not distinguish v_{τ} from anti- v_{τ}

 $\sigma_{\nu_{\tau}+\bar{\nu}_{\tau}}^{const}(DONuT) = 0.72 \pm 0.24 \pm 0.36 \times 10^{-38} cm^2 GeV^{-1}$

> OPERA: First measurement with v_{τ} only

	Expected	Expected		$\sigma^{const}_{ u_{ au}}$	
	Signal	Background	Observed ν_{τ}	$(10^{-38} cm)$	1^2GeV^{-1})
				(68% C.L)	(90% C.L)
$\frac{\text{Preliminary}}{\Delta m^2_{23} = 2.5 \cdot (10^{-3} \text{ eV}^2)}$	5.88	1.86	10	$0.96\substack{+0.43 \\ -0.37}$	[0.42; 1.67]

Agreement with SM value $0.67 \cdot 10^{-38} cm^2 GeV^{-1}$ within 1σ

BDT analysis $(\tau \rightarrow 1h)$

Applying the minimum bias cut, the largest background is expected in $\tau \rightarrow 1h$ decay channel

In this decay channel, the *Boosted Decision Tree* method helps rejecting background.

The Boosted Decision Tree is a machine learning method used to classify observations. It is based on a "forest" of trees of binary choices

Maximising purity × efficiency, 83.2% of background is rejected.

Input = events surviving the minimum bias selection Signal & Bkg normalized to the number of expected events

1.36 expected event of bkg for $\tau \rightarrow 1h \Rightarrow 1$ event classified as bkg: good understanding of signal and background

New result on $v_{\mu} \rightarrow v_{e}$ oscillations

* Expected v_e events of bkg:

- v_e beam contamination: 33.2 ± 5
- * $\tau \rightarrow e + \text{mis-id'd } \pi_0: 1.2 \pm 0.1$
- * From 3-flavor oscillation $\nu_{\mu} \rightarrow \nu_{e}$: 2.9 ± 0.4 (sin²2 $\theta_{13} = 0.098$)
- * Observed: 34 v_e events

Observed events in agreement with expected background + standard oscillation Preliminary energy spectrum of v_e candidates (2008-2012 data)

Sterile Neutrinos: $v_{\mu} \rightarrow v_e$ in 3+1 model

 Δm^2_{41} (eV²)

10

Exclusion Plot

68% C.L.

90% C.L 95% C.L

 v_e search results used to derive limits on the mixing parameters of a massive sterile neutrino in 3+1 neutrino model

$$\sin^2 2\theta_{\mu e} = 4|U_{\mu 4}|^2|U_{e4}|^2$$

 10^{-3}

10⁻²

10⁻¹

sin²20

Study of Charged Particle Multiplicity Distributions

Multiplicity distribution of charged hadron particles in neutrino-lead interactions

Different phenomenological and theoretical models can be tested

Annual modulation of atmospheric muons

Conclusions

- * **Discovery of** $v_{\mu} \rightarrow v_{\tau}$ **appearance** in the CNGS neutrino beam: 5.1 σ
- * Minimum bias analysis to increase the number of v_{τ} candidates \Rightarrow measurement of Δm^2_{23} (first measurement in appearance mode) and absolute v_{τ} cross section (first measurement) with less statistical uncertainty. Preliminary results in agreement with PDG2016 at 1σ
- * $v_{\mu} \rightarrow v_{e}$ oscillation search: number of events observed in agreement with expected background + standard oscillation
- ◆ Constraints on sterile neutrinos from $ν_µ → ν_e$ oscillation with the 3+1 flavor model
- Study of the multiplicity distribution of charged hadron particles in neutrino-lead interactions to aid in tuning neutrino-lead interaction models of the Monte Carlo event generators
- Non-oscillation Physics: OPERA data set is being used for studying annual modulation of atmospheric muons
- * <u>**PERSPECTIVES</u>**: Exploit unique feature of identifying all three flavors: use v_{τ} appearance, v_{e} appearance and v_{μ} disappearance to constrain on the oscillation parameters with one single experiment</u>

Thank you for your attention

Back-up slides

The 2-flavor description neglects sizable effects. The upper bounds on $\sin^2 2\theta_{\mu e}$ are relaxed by a factor of 3 with respect to those obtained in the 2-flavor description. (*PRD91* (2015) *no.9*, 091301)

$$\mathcal{P}_{\mu e} = \frac{1}{2} \sin^2 2\theta_{new}$$
$$\mathcal{P}_{\mu e}(sensitivity) < 5.2 \times 10^{-3}$$
$$\mathcal{P}_{\mu e}(upper\ limit) < 3.6 \times 10^{-3}$$

 $\mathcal{P}_{\mu e}(sensitivity) < 3.4 \times 10^{-3}$ $\mathcal{P}_{\mu e}(upper\ limit) < 3.1 \times 10^{-3}$