Recent results from DØ and Recent Tevatron Combinations

Boris Tuchming – Irfu/Spp CEA Saclay on behalf of the DØ and CDF collaborations

La Thuile – Recent results from D0 and Tevatron

Outline

CEA - Saciay

In this talk

- Recent results from D0
- Some recent CDF+D0 combinations
- See talk by Donatella Lucchesi for recent CDF results and more Tevatron combinations
- Top quark physics
 - Top quark mass
 - tt production asymmetries
- Search for CP violating asymmetry in B⁺ production
- $X(5568) \rightarrow B_s \pi$

The Tevatron proton-antiproton collider

D0 detector in Run II

- Tracking and vertexing
 - 2 Tesla Solenoid
 - Silicon (|η| < 3.0, r~10cm)
 - Fiber (|η| < 1.7, r~50 cm)

Calorimetry

- LAr/U
- |η|<4.0

Muons:

- Toroid
- Drift chambers/Scintillators
- |η| <2.0

Typical coverage

- Muons $|\eta| < 2$
- Electrons
 - |η|<1.1
 - 1.5<|η|<2.5
- Jets |η|< 2.5

Magnet polarities

 Reverse toroid and solenoid polarities regularly to cancel detector asymmetries for charged track reconstruction.

Top quark mass measurements

- Different analyses at D0 depending on
 - Channel: mainly *l*+jets and dilepton
 - Method to extract top mass
- Consistency check

Template method

- Not sensitive to same systematics
- Reduction of systematic uncertainties

 $M\sim 80.4~GeV$

Matrix Element (ME) method
 Define likelihood from matrix elements, PDF, transfer functions (parton p_T↔ jet p_T).

 $P(\vec{x}, m_t, JES) = \frac{1}{\sigma} \int d\sigma(\vec{y}, m_t) f(\tilde{q}_1) f(\tilde{q}_2) W(\vec{x}, \vec{y}, JES) d\tilde{q}_1 d\tilde{q}_2$

 $P_{\text{evt}} = f_{\text{sig}} P_{\text{sig}}(\vec{x}, m_t) + (1 - f_{\text{sig}}) P_{\text{bkg}}(\vec{x})$

- Integrate over unmeasured quantities or quantities with a significant measurement uncertainty
- CPU demanding

Cross-section method

Derive top mass from measured cross section

Top mass in dilepton channel using ME

b

h

- Very pure channel with low background
- Kinematic underconstrained because of two neutrinos
- Extract maximum information with ME method

Calibration of mass and uncertainty using MC ensembles

Top mass in dilepton events

- Mass extraction with ME method
 - Use JES calibration from D0 l+jets measurement [PRL 113, 032002 (2014), PRD 91, 112003 (2015)] to reduce by ~3 the JES uncertainty
 - Maximization of ME-based likelihood

 $m_t = 173.93 \pm 1.61 \text{ (stat)} \pm 0.88 \text{ (syst)} \text{ GeV}$

 $\delta m_t / m_t = 1.1\%$ PRD 94, 032004 (2016)

Previously published dilepton measurement using templates and neutrino-weighting technique

 $m_{t} = 173.32 \pm 1.32 \text{ (stat)} \pm 0.85 \text{ (syst)} \text{ GeV}$

 $\delta m_t / m_t = 0.9\%$ PLB 752, 18 (2016)

- Statistical correlation $64 \pm 2\%$ between the two measurements.
- Combined Run II dilepton measurement

m, = 173.50 ± 1.31 (stat) ± 0.84 (syst) GeV

D0-Conf-6485 (2016) to be submitted to PRD

 $\delta m_{t}/m_{t} = 0.9\%$

Dominant uncertainties

Statistical uncertainty

Top mass from inclusive cross-section

- Exploit dependence as a function of top mass
 - Measure cross-section for different top mass hypotheses
 - Dependence due to variation of acceptance
 - · The theoretical prediction depends on the top "pole mass"
 - Use NNLO+NNLL pQCD calculation top++
- Construct a Bayesian posterior probability of the top mass
 - Flat prior on top mass
- Extract top mass
 - Advantage: well defined "pole mass", as opposed to "MC mass" obtained in direct measurements

$$m_t = 172.8 \pm 1.1 \text{(theo)}_{-3.1}^{+3.3} \text{(exp) GeV}$$

 $m_t = 172.8 \pm 3.3 \text{ GeV}$

$$\delta m_t / m_t = 1.9\%$$

 Improvement over the 5.3 fb⁻¹ result 167.5^{+5.2} GeV (PLB 703, 422 (2011)) due to reduced dependence of measurement vs mass

Top mass from differential cross-section

Differential cross-sections as a function of relevant kinematical quantities are sensitive to top pole mass

Mass from differential cross-section : result

- Mass extracted from fit to unfolded data
 - Determine correlation matrix for unfolded data
 - χ^2 (Data- theory) minimized to determine mass and experimental uncertainty
 - Extract mass assuming different scale/PDF to obtain theory uncertainty.

D0 final top mass combination

- D0 combination
 - Combine Run I and Run II direct measurements in *t*+jets and dilepton channels
 - Since last combination (2011): updated measurements in *t*+jets and dilepton channel using full Run II data
- Combination accounts for all uncertainties and their correlation
 - Use BLUE (Best Linear Unbiased Estimate)
 - χ2 /ndof = 2.5/3, prob = 47 %: good consistency between the measurements

		Run I		Run II	
		$\ell + \text{jets}$	$\ell\ell'$	$\ell + jets$	$\ell\ell'$
	In situ light-jet calibration	n/a	n/a	×	×
	response to $b, q, and g$ jets	n/a	n/a	×	×
	Model for b jets	×	×	×	×
	Light-jet response	\otimes	\otimes	×	×
	Out-of-cone correction	×	×	n/a	n/a
	Offset	×	×	n/a	n/a
D0-Conf-6485 (2016)	Jet modeling	n/a	n/a	×	×
	Multiple interactions model	n/a	n/a	×	×
	b tag modeling	n/a	n/a	\times	×
	Lepton modeling	n/a	n/a	×	×
to be submitted to PRD	Signal modeling	×	×	×	×
	Background from theory	×	\otimes	×	\otimes
	Background based on data	n/a	n/a	0	0
	Calibration method	0	0	0	0
	Statistical	0	0	0	0

correlation table

D0 final top mass combination

Combined

D0-Conf-6485 (2016) to be submitted to PRD value (GeV) 0.410.160.090.21< 0.01

Offset	< 0.01
Jet modeling	0.07
Multiple interaction model	0.06
b tag modeling	0.10
Lepton modeling	0.01
Signal modeling	0.35
Background from theory	0.06
Background based on data	0.09
Calibration method	0.07
Systematic uncertainty	0.64
Statistical uncertainty	0.40
Total uncertainty	0.75
Dominant uncertainties	

- JES uncertainty from *l*+jets calibration (statistical origin)
- Statistical uncertainty Signal model

Tevatron top mass (Summer 16)

13

All D0 and CDF inputs are	e published.		Combined
Perform BLLIE combinatio			value (GeV)
		$M_{\rm t}$	174.30
• χ_2 /ndot = 10.8/11, prob =	= 46 %	In situ light-jet calibration (iJES)	0.31
 Good consistency between 	en measurements	Response to $b/q/g$ jets (aJES)	0.11
Combination dominated by	v Itiets	Model for b -jets (bJES)	0.10
	y ()018	Out-of-cone correction (cJES)	0.03
channels		Light-jet response (1) (rJES)	0.05
$m = 174.30 \pm 0.35$ (stat) ± 0.35	.54 (syst) GeV	Light-jet response (2) (dJES)	0.14
		Lepton modeling (LepPt)	0.01
$\delta m/m =$	0.37% on 100	Signal modeling (Signal)	0.36
_t _t	on on lepte	Jet modeling (DetMod)	0.05
	≨ 0.6	b-tag modeling $(b$ -tag)	0.07
		Background from theory (BGMC)	0.04
ominant uncertainties	und 1.5 − 1.5	Background based on data (BGData)	0.07
JES uncertainty from <i>l</i> +jets	Leas	Calibration method (Method)	0.07
calibration (statistical origin)	= 0.4 −	Offset (UN/MI)	0.00
Statistical uncertainty	je jeptoner	Multiple interactions model (MHI)	0.06
Signal model	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Systematic uncertainty (syst)	0.54
3	veig	Statistical uncertainty (stat)	0.35
	– □ 0.2	Total uncertainty	0.65
	0.1 CDF-II all Parts	Analysis	optonviets CDF-ILXY
		, and you	

Π

Tevatron top mass summary

arXiv:1608.01881, D0 Note 6486, CDF Note 11204 Mass of the Top Quark

m, = 174.30 ± 0.35 (stat) ± 0.54 (syst) GeV

 $\delta m_t / m_t = 0.37\%$

Not final:

Expect an improved CDF *l*+jets measurement in a few months

14

Tevatron tt forward-backward asymmetry (A_{FB})

CEA - Saclay

QCD + EW theory predicts positive asymmetry in tt production: top quark tend to go in the same direction as incoming proton at Tevatron

- Main positive contribution due to interference between born and box diagrams
- Negative contribution in ISR/FSR interferences
- Also non negligible impact of interferences between QCD box and electroweak diagrams
- New Physics could affect quantitatively the asymmetry
 - Eg axigluon models

A _{FB}	History	(2)
-----------------	---------	-----

$$\Delta y = y_t - y_{\bar{t}}$$

$t\overline{t}$ forward-backward asymmetry

17

- Tevatron *l*+jets analyses were showing departure from NLO SM expectations
- More recent publications:
 - NNLO+EW SM expectations evaluated to be higher: ~9.5±0.5% (PRL 115, 052001 (2015))
 - More data, more refined analysis:
 - Latest experimental results are lower
 - More compatible with SM
- In 2015-2016 D0 and CDF also published latest measurements in dilepton channels

Tevatron combination: inclusive A

- Use BLUE method to combine CDF and D0
 - large statistical uncorrelated uncertainties
 - main correlation from signal model ~ $10\frac{9}{2}$
- tt asymmetry

 $A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \quad \Delta y = y_t - y_{\bar{t}}$

1.3 s.d. higher than NNLO prediction

lepton qη asymmetry

 $A_{\rm FB}^{\ell} = \frac{N_{\ell}(q \times \eta > 0) - N_{\ell}(q \times \eta < 0)}{N_{\ell}(q \times \eta > 0) + N_{\ell}(q \times \eta < 0)}$

1.6 s.d. higher than NNLO prediction

dilepton asymmetry

 $A_{\rm FB}^{\ell\ell} = \frac{N(\Delta\eta > 0) - N(\Delta\eta < 0)}{N(\Delta\eta > 0) + N(\Delta\eta < 0)} \Delta\eta = \eta_{\ell^+} - \eta_{\ell^-}$ 1.3 s.d. higher than NNLO prediction

- Note: the 3 results are correlated
- Conclusion: results compatible with SM

CPV asymmetry in $B^+ \rightarrow \mu \nu D^0$

Direct CP violating asymmetry defined as

$$A^{\mu D^{0}} = \frac{\Gamma(B^{-} \to \mu^{-} \overline{\nu_{\mu}} D^{0}) - \Gamma(B^{+} \to \mu^{+} \nu_{\mu} \overline{D}^{0})}{\Gamma(B^{-} \to \mu^{-} \overline{\nu_{\mu}} D^{0}) + \Gamma(B^{+} \to \mu^{+} \nu_{\mu} \overline{D}^{0})}$$

- **Motivation**
 - Never measured before
 - A^{μD} Expected to be 0 in Standard Model
 - Try to explain like-sign dimuon asymmetry
 - D0 measured like-sign dimuon asymmetry with significance of 3.6 sd
 - CPV asymmetry in $B^+ \rightarrow \mu \nu \overline{D}^0$ could be a source of like-sign dimuon asymmetry
 - Would require $f_{B_{SL}^+} \times A^{\mu D} = 0.5\%$ $\rightarrow A^{\mu D^{\circ}} \sim 0.8\%$

$$A_{CP} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

Raw asymmetry measurement

Selection:

- Select D⁰ candidates (D⁰ \rightarrow K⁻ π^+)
- Mass range 1.40 <M(Kπ)<2.20 GeV
- Simultaneous fit of sum (B⁺+ B⁻) and difference (B⁺ - B⁻) to disentangle signal from backgrounds
 - Measure

$$A_{\rm raw} = \frac{N_{\mu^- D^0} - N_{\mu^+ \overline{D}^0}}{N_{\mu^- D^0} + N_{\mu^+ \overline{D}^0}}$$

• A_{raw}=[-1.12± 0.08 (stat) ± 0.008 (syst)]%

CPV Asymmetry extraction

• Correct for dilution, detector and physics effects:

$$A^{\mu D^0} = \frac{1}{f_B} (A_{\text{raw}} - A_{\text{det}} - A_{\text{phys}})$$

- Determine detector asymmetry using well established methods
 - As done in like-sign dimuon asymmetry or B_d semileptonic asymmetry (PRD 86, 072009 (2012))
 - $A_{det} = -A_{\mu} A_{\kappa} + A_{track} = [-1.02 \pm 0.08 \text{ (syst)}]\%$
- MC to determine
 - Dilution of signal in other sources of D⁰µX events
 - $f_B = 56 \pm 0.2\%$
 - Fraction of B_d (35.2±0.2%) and B_s (1.8±0.1%) contributing to $D^0\mu X$ final state and yielding possible physics asymmetry
 - A_{phys}=[-0.02±0.02]%
- Result in agreement with SM value of 0
 PRD 95, 031101(R) (2017)

 $A^{\mu D^0} = [-0.14 \pm 0.14 (\text{stat}) \pm 0.14 (\text{syst})]\%$

too small to explain like-sign dimuon asymmetry

New state X(5568) in B_s+ π[±] final states

CEA - Sholay

- Last year we published evidence for a new states decaying into $\rm B_{s}\text{+}\pi^{\pm}$
 - (Phys. Rev. Lett. 117, 022003 (2016))
 - $X \to B_s^{-} \pi^{\pm}$, $B_s^{-} \to J/\psi \phi (J/\psi \to \mu^+\mu^-, \phi \to K^+K^-)$
- 5.1 sigma or 3.9 sigma excess depending on the cut
 - M_x = 5567.8 ± 2.9 MeV
 - $\Gamma_{\rm x} = 21.9 \pm 6.4 \, {\rm MeV}$
- Relatively large width
 - cannot be a weak decay
 - 4 flavors are in the final state \rightarrow 4 flavors are present in the initial state.
 - Evidence for a tetraquark ???

La Thuile – Recent results from D0 and Tevatron

Since first claim

- CEA Saciar
- LHCb produced similar analysis (Phys. Rev. Lett. 117 152003 (2016))
 - First (quick) analysis performed for Moriond QCD 2016
 - Final analysis for ICHEP
 - $J/\psi \phi$ and $D_s \pi$ channels
 - No signal observed
 - Yield relative to B_s smaller than 2.4% at 95% CL (to be compared to D0 measurement of 8%)
- CMS has produced similar analysis for ICHEP (CMS-PAS-BPH-16-002)
 - No signal observed
 - Yield relative to B_s smaller than 3.9% at 95%CL
- Mystery why nothing is seen at LHC
 - Problem in D0 analysis ?
 - Different production modes for X and/or B_s ?
 - 2 TeV vs 8 TeV
 - pp vs pp

 $B_{t} + \pi^{t}$ state in semi-leptonic channel at D0

5700

5600

D0-Conf-6488

 Now working on proper modeling of signal and background to assess significance of the excess. We expect an update in the next couple of weeks.. Stay tuned

 $M(B_s^0\pi^{\pm})$ [MeV/c²]

5900

5800

Summary

- Still new results appearing 5 years after Tevatron shutdown
- Top quark physics.
 - Precise measurements of top quark mass
 - Latest measurements and combinations to finalize Tevatron legacy
 - Top quark mass measured with 0.43% accuracy at D0
 - Top quark mass measured with 0.37% accuracy at Tevatron
 - $t\bar{t} \hat{A}_{FB}$ in agreement with Standard Model
- New ideas and new measurements in the heavy quark sector
 - CP violation test using B⁺ semileptonic decays
 - Evidence for new state $X(5568) \rightarrow B_s \pi^{\pm}$
- Also electroweak analyses to appear soon
 - $sin^2\theta_w$ from Z $\rightarrow \mu\mu$ A_{FB}
 - W mass measurement using full data set

Support slides

Summary of this X(5568) D0 paper

• A new state X(5568) produced in pp collisions The significance is 5.1σ / 3.9σ with/without the cut $\Delta R < 0.3$ $m = 5567.8 \pm 2.9 (stat) \stackrel{+0.9}{_{-1.9}} (syst) MeV$

 $(m=5568+48 \,\text{MeV if } X \to B_s^* \pi^{\pm})$

 $\Gamma = 21.0 \pm 6.4 \text{ (stat)} {}^{+5.0}_{-2.5} \text{(syst)} \text{ MeV}$ $R = \frac{\sigma(X(5568)) \times Br(X \to B_s^0 \pi^{\pm})}{\sigma(B_s^0)} = (8.6 \pm 1.9 \pm 1.4)\%$

• $X \rightarrow B_s \pi^{\pm} JP = 0^+ \text{ or }$

 $X \rightarrow B_s^* \pi^{\pm} JP = 1^+$

with/without ΔR cut

- Submitted paper in February
 - Main result obtain with $\Delta R < 0.3$, 5.1 sigma significance
 - Analysis without cut performed as a cross-check
- However ∆R<0.3 cut modifies the mass spectrum
 - Hint that some backgrounds (may be $B_c^{\pm} \rightarrow B_s \pi^0 \pi^{\pm}$ (not in simulation)) are removed by this cut.
 - This was motivation to keep this cut
 - We believe we control the change in mass spectrum for signal due to this cut
 - PRL feedback
 - Keep the analysis as it is, but use significance as obtained without cone cut
 - 5.1 sigma \rightarrow 3.9 sigma
- Published version: "Evidence of a new state"
 - Phys. Rev. Lett. 117, 022003 (2016)

World combination March 2014

LHC (direct) measurements

September 2015 August 2016 **ATLAS** Preliminary m_{top} summary - Aug. 2016, $L_{int} = 4.6 \text{ fb}^{-1} - 20.3 \text{ fb}^{-1}$ CMS 2010, dilepton 175.50 ± 4.60 ± 4.60 GeV JHEP 07 (2011) 049. 36 pb⁻¹ (value \pm stat \pm syst) CMS 2011, dilepton $172.50 \pm 0.43 \pm 1.43 \text{ GeV}$ m_{ten} ± tot. (stat. ± JSF ± bJSF ± syst.) all jets Eur. Phys. J. C75 (2015) 158 EPJC 72 (2012) 2202, 5.0 fb⁻¹ (value \pm stat \pm syst) 175.1 ± 1.8 (14 ± 1.2) L., = 4.6 fb⁻¹ single top* CONF-2014-055 CMS 2011, all-jets $173.49 \pm 0.69 \pm 1.21 \text{ GeV}$ 172.2 ± 2.1 (0.7 ± 2.0) L., =20.3 fb⁻¹ EPJC 74 (2014) 2758, 3.5 fb⁻¹ (value \pm stat \pm syst) → I+jets Eur. Phys. J. C75 (2015) 330 $172.3 \pm 1.3 (0.2 \pm 0.2 \pm 0.7 \pm 1.0)$ L., = 4.7 fb⁻¹ CMS 2011, lepton+jets $173.49 \pm 0.43 \pm 0.98~GeV$ → dilepton Eur. Phys. J. C75 (2015) 330 JHEP 12 (2012) 105. 5.0 fb⁻¹ (value \pm stat \pm syst) 173.8 ± 1.4 (0.5 ± 1.3) L., = 4.7 fb⁻¹ CMS 2012, dilepton $172.82 \pm 0.19 \pm 1.22 \text{ GeV}$ → dilepton arXiv:1606.02179 L_{in} = 20.2 fb⁻¹ 173.0 ± 0.8 (0.4 ± 0.7) This analysis, 19.7 fb⁻¹ (value \pm stat \pm syst) all jets* CONF-2016-064 L_{int} = 20.2 fb⁻¹ 173.8 ± 1.2 (0.6 ± 1.0) CMS 2012, all-jets $172.32 \pm 0.25 \pm 0.59 \text{ GeV}$ This analysis. 18.2 fb⁻¹ (value \pm stat \pm syst) CMS 2012, lepton+jets $172.35 \pm 0.16 \pm 0.48 \; \text{GeV}$ $\sigma(t\bar{t})$ dilepton $^{Eur.\ Phys.\ J.\ C74}$ (2014) 3109 172.9 ± 2.5 This analysis, 19.7 fb (value \pm stat \pm syst) L., =4.6-20.3 fb" σ(tt+1-jet) ^{JHEP 10 (2015) 121} 173.7 ± 2.3 **CMS** combination $172.44 \pm 0.13 \pm 0.47$ GeV L. =4.6 fb⁻¹ (value \pm stat \pm syst) Tevatron combination (2014) 174.34 ± 0.37 ± 0.52 GeV arXiv:1407.2682 ----- ATLAS Comb.±1σ (value \pm stat \pm syst) stat. uncertainty World combination 2014 stat. ⊕ JSF ⊕ bJSF uncertainty ATLAS Comb. June 2016 (arXiv:1606.02179) $173.34 \pm 0.27 \pm 0.71$ GeV ATLAS, CDF, CMS, DO 172.84 ± 0.70 total uncertainty (value \pm stat \pm syst) arXiv:1403.4427 *Preliminary, →Input to comb. 170 175 165 180 165 170 175 180 185 m, [GeV] m_{top} [GeV] m, = 172.35 ± 0.51 (total) GeV m, = 172.84 ± 0.70 (total) GeV $\delta m_{t}/m_{t} = 0.40\%$ $\delta m_{t}/m_{t} = 0.29\%$

Top pair production signature

- Top decays into Wb (99.82%). Then $W \rightarrow ev \text{ or } \mu v \text{ or } \tau v \text{ or jets.}$
 - Decay products with high momenta, large angular separation
 - Expect to reconstruct energetic objects: e, μ , jets, E_{T miss}
 - Tagging of b-quark jets to improve purity
 Lepton+jets channels:

D0 top mass combination

• Run I and Run II measurements in I+jets and dilepton channels.

$m_{t} = 174.95 \pm 0.40(stat) \pm 0.64 (syst) GeV$

						D0 Run I		D0 Run II	
						$\ell + \mathrm{jets}$	$\ell\ell'$	$\ell + \mathrm{jets}$	$\ell\ell'$
					$\int \mathcal{L} dt$	0.1	0.1	9.7	9.7
					m_t	180.10	168.40	174.98	173.50
					In situ light-jet calibration	n/a	n/a	0.41	0.47
					Response to b , q , and g jets	n/e	n/e	0.16	0.28
					Model for b jets	0.71	0.71	0.09	0.13
					Light-jet response	2.53	1.12	0.21	0.31
					Out-of-cone correction	2.00	2.00	n/a	n/a
		<u>.</u>		**	Offset	1.30	1.30	n/a	n/a
	ℓ + iets	1 <i>ℓℓ′</i>	Run ℓ + jets	11 5 <i>ll'</i>	Jet modeling	n/e	n/e	0.07	0.14
In situ light-jet calibration	n/a	n/a	×	×	Multiple interaction model	n/e	n/e	0.06	0.07
response to b , q , and g jets Model for b jets	n/a	n/a	×	×	b tag modeling	n/e	n/e	0.10	0.22
Light-jet response	\otimes	\otimes	×	×	Lepton modeling	n/e	n/e	0.01	0.08
Out-of-cone correction	×	\times	n/a	n/a	Signal modeling	1.10	1.80	0.35	0.43
Offset let modeling	X n/a	X n/a	n/a	n/a	Background from theory	1.00	1.10	0.06	0.05
Multiple interactions model	n/a	n/a	×	×	Background based on data	n/e	n/e	0.09	0.06
b tag modeling	n/a	n/a	×	×	Calibration method	0.58	1.14	0.07	0.14
Signal modeling	n/a ×	n/a ×	×	×	Systematic uncertainty	3.89	3.63	0.63	0.84
Background from theory	×	\otimes	×	\otimes	Statistical uncertainty	3.60	12.30	0.41	1.31
Background based on data	n/a	n/a	0	0	Total uncertainty	5 30	12.82	0.76	1 56
Statistical	0	0	0	0		0.00	12.00	0.10	1.50

Optimization of systematic uncertainties

- A dominant uncertainty due to the scale of the jet energies: JES
 - JES calibrated in γ +jet events has ~ 2% uncertainty
 - A 2% shift on JES yields ~1% shift on the top mass in dilepton events
- Simultaneous measurement of top mass and JES scale factor kJES and in *l*+jets channel
 - * JES constrained in-situ using dijet mass from W \rightarrow qq' decay

m_t= 174.98 ± 0.76 GeV kJES= 1.025 ± 0.005

> PRL 113, 032002 (2014) PRD 91, 112003 (2015)

- kJES factor propagated to the dilepton channel
- Reduce by ~ 3 the JES uncertainty

 $M\sim 80\;GeV$

