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Summary. — The leading order hadronic contribution to the muon magnetic
moment anomaly, aHAD

µ , is determined entirely in the framework of QCD. The

result in the light-quark sector, in units of 10−10, is aHAD
µ |uds = 686 ± 26, and in

the heavy-quark sector aHAD
µ |c = 14.4 ± 0.1, and aHAD

µ |b = 0.29 ± 0.01, resulting

in aHAD
µ = 701 ± 26. The main uncertainty is due to the current lattice QCD

value of the first and second derivative of the electromagnetic current correlator at
the origin. Expected improvement in the precision of these derivatives may render
this approach the most accurate and trustworthy determination of the leading order
aHAD
µ .

1. – Introduction

Some time ago we proposed a novel method for determining the leading order hadronic
contribution to the muon g − 2 entirely from theory, i.e. QCD [1]-[2]. The method is
based on Cauchy’s theorem in the complex squared energy s-plane, which provides a
unique relation between the behaviour of current correlators on a circle of radius |s| = s0
and their discontinuity across the real axis (see Fig.1). Here s0 & 1 GeV2 is the threshold
for perturbative QCD (PQCD) valid on the circle. This theorem states

(1)

∮
C

Π(s) ds =
∑
i

[Residue Π(s) @ pole]i ,

where Π(s) is some QCD current correlator. After splitting the contributions on the
circle and across the real axis, and introducing some arbitrary integration kernel, K(s),
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it becomes
(2)

1

2π i

∮
|s0|

Π(s)K(s) ds +

∫ s0

sth

1

π
ImΠ(s)K(s) ds =

∑
i

[Residue Π(s)K(s)@ pole]i .

This is called a QCD Finite Energy Sum Rule (FESR), which relates QCD information

Fig. 1. – The squared energy s-plane used in Cauchy’s theorem, Eqs.(1)-(2).

on the circle with e.g. hadronic physics on the real axis [3]. This duality between QCD
and hadronic physics may be violated at low/intermediate energies [3]-[5], s0 . 3GeV2.
However, in Section 2 we show that this effect is negligible in the present application.
One way of exploiting this fundamental relation is to determine the low energy con-
tribution encapsulated in the line-integral from information on the circle, provided e.g.
by perturbative QCD (PQCD), as well as from knowledge of the residues at the poles.
The latter can be determined by Lattice QCD (LQCD). This leads to an entirely QCD
determination of the anomaly which does not rely on experimental data e.g. from e+e−

annihilation, or τ - decay into hadrons.
The standard expression of the (lowest order) hadronic muon anomaly is given by [6]

(3) aHADµ =
α2
EM

3π2

∫ ∞

sth=m2
π

ds

s
K(s) R(s) ,

where αEM is the electromagnetic coupling, K(s) is a known integration kernel, and the
R-ratio is

(4) R(s) = 3
∑
f

Q2
f [8π ImΠ(s)QCD] ,

where Π(s)QCD is the QCD vector current correlator normalized as

(5) ImΠ(s)QCD =
1

8π

[
1 +

αs
π

+ · · ·
]
.



QCD DETERMINATION OF THE LEADING ORDER HADRONIC CONTRIBUTION TO THE MUON G-23

The integration kernel K(s), at leading order, in Eq.(3) is given by [6]

(6) K(s) =

∫ 1

0

dx
x2(1− x)

x2 + s
m2

µ
(1− x)

,

where mµ is the muon mass. At leading order one can split aHADµ into the contributions
from the three quark-mass regions labelled by the quark flavours (u, d, s), c, and b, i.e.

(7) aHADµ = aHADµ |uds + aHADµ |c + aHADµ |b .

In order to be able to determine each one of these contributions entirely from theory,
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Fig. 2. – The exact kernel K(s), Eq.(6) (solid line), together with the fit kernel K1(s) (solid
circles), Eq.(8), in the light-quark region. Relative difference is in the range 0 − 1%. The
corresponding anomalies using all available experimental data are given in Eqs.(9)-(10).

thus making use of Cauchy’s theorem, Eq.(2), it is necessary to substitute the original
kernel K(s) in Eq.(3) by kernels possessing pole singularities. It turns out that given
its shape, K(s) can be easily substituted, with extreme accuracy, by such kernels in
the three separate regions (uds),(c), and (b). Starting with the light-quark sector, the
optimal substitute kernel is [1]

(8) K1(s) = a1 s+ a2 s
−1 + a3 s

−2 + a4 s
−3 ,

in the region sth ≤ s ≤ s0 = (1.8 GeV)2. The values of the coefficients are: a1 =
2.257 × 10−5 GeV−2, a2 = 3.482 × 10−3 GeV2, a3 = −1.467 × 10−4 GeV4, and a4 =
4.722×10−6 GeV6. This is shown in Fig.2 (solid circles) together with the original kernel
K(s) (solid line). The relative difference between K1(s) and K(s) in this region lies in
the range 0− 1%.
A further estimate of this excellent accuracy can be obtained by using all available e+e−

experimental data for R(s) in this region together with the original kernel K(s), and the
substitute K1(s), to compute aHADµ |uds.
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The results for s0 = (1.8GeV)2 are (in units of 10−10)

(9) aHADµ |uds = 641.69 ,

using the original kernel, K(s), and

(10) aHADµ |uds = 641.16 ,

using the fit kernel, K1(s), i.e. a difference of 0.08%.

Proceeding to the charm-quark sector the fit kernel is given by [1]

(11) K2(s) = b1 s
−1 + b2 s

−2 ,

where b1 = 0.003712 GeV2, and b2 = −0.0005122 GeV4, in the range M2
J/ψ ≤ s ≤ s2,

with s2 ≃ (5.0GeV)2. This function differs from the original kernel K(s) by less than
0.02%, thus providing an excellent fit. Finally, in the bottom-quark region, M2

Υ ≤ s ≤
(12.0GeV)2, the optimal fit kernel is [1]

(12) K3(s) = c1 s
−1 + c2 s

−2 ,

where c1 = 0.003719GeV2, and c2 = −0.0007637GeV4. This kernel differs from the
exact kernel, K(s), by less than 0.0005 % in this range.
These three integration kernels Ki(s) will be used to compute the contour and the line
integrals in Eq.(2), up to the corresponding values of the Cauchy radius, s0. Beyond these
limits perturbative QCD (PQCD) can be safely used up to infinity to fully saturate the
line integral in Eq.(3), thus requiring only the original kernel K(s). Finally, the residues
in Eq.(2) can be fully computed in PQCD in the charm- and bottom-quark sectors
making use of the heavy-quark mass expansion at the origin, known up to the four-loop
level. In the light-quark sector LQCD determinations of the first and second derivatives
of the vector current correlator will be used to calculate the residues thus completing
the theoretical calculation of the anomaly. As a complementary test in the light-quark
region, the leading residue can also be determined from the electromagnetic radius of the
pion, well known from data.

2. – QCD Determination of aHADµ

The expression for the lowest order hadronic anomaly, Eq.(3), can be recast as

aHADµ = 8α2
EM

∑
i

Q2
i

{
Res

[
Πi(s)

Ki(s)

s

]
s=0

− 1

2πi

∮
|s|=s0

ds

s
Ki(s) Πi(s)

+

∫ ∞

s0

ds

s
K(s)

1

π
ImΠi(s)

}
,(13)

where the index i runs from one to three, covering the three sectors (uds), (c) and (b).
Notice that the last term above involves the original kernel K(s). Beginning with the
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charm-quark sector, the perturbative QCD heavy-quark Taylor series expansion of the
correlator around the origin is

(14) Πc(s)|PQCD =
3

32π2
Q2
c

∑
n≥0

C̄nz
n ,

where z = s/(4m̄2
c). The mass m̄c ≡ m̄c(µ) is the charm-quark mass in the MS-scheme

at a renormalization scale µ. The coefficients C̄n up to n = 30 are known at three- and
four-loop level [7]-[10]. No coefficients C̄4 and higher contribute to the residue due to the

s-dependence of K2(s). Using as input µ = 3GeV, α
(4)
s (3GeV) = 0.2145(22) [11] and

m̄c(3GeV) = 0.986(10)GeV [12], one finds

(15) Πc(s) = 0.03604 + 0.001833 s+ 0.00012335 s2 + 0.000012472 s3 +O(s4) ,

where s is expressed in GeV2, and the coefficients have the appropriate units to render
Πc(s) dimensionless. The residue in the charm-quark sector is

(16) Res

[
Πc(s)|PQCD

K2(s)

s

]
s=0

= 76.1(5) × 10−7 ,

where the error is due to the uncertainty in αs and to the truncation of PQCD. For the
bottom quark sector the residue is

(17) Res

[
Πb(s)|PQCD

K3(s)

s

]
s=0

= 6.3 × 10−7 ,

where the error is negligible. Next, in order to calculate the contour integral around the
circle we make use of PQCD, i.e.

(18) ΠPQCD(s) =

∞∑
n=0

(
αs(µ

2)

π

)n
Π(n)(s) ,

where

(19) Π(n)(s) =
∞∑
i=0

(
m̄2

s

)i
Π

(n)
i .

The complete analytical result in PQCD up to O(α2
s, (m̄

2/s)30) is given in [13]-[15], while

Π
(3)
2 is known up to a constant term [16]. This constant term does not contribute to the

contour integral due to the s-dependence of K2(s). Finally, at five-loop level the full

logarithmic terms in Π
(4)
0 and Π

(4)
1 are known from [17] and [18], respectively.

Putting all together, the contour integrals using fixed order perturbation theory (FOPT)
are

1

2πi

∮
ds

s
Kn(s) Πq(s)|PQCD =

 135.3(6)× 10−7

20.3(1)× 10−7

3.6(2)× 10−7 ,
(20)
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for n = 1, 2, 3 and q = uds, c, b, respectively. For n = 1, i.e. the (uds) sector, the
result in contour improved perturbation theory (CIPT) is 135.6(6) × 10−7, i.e. a 0.2%
difference with FOPT. Also for n = 1, changing the PQCD threshold in the interval
s0 = (1.8− 2.0)2 GeV2 leads to a change of only 0.15% in the final value of aHADµ . The
BES Collaboration data in this region and beyond [19] agrees well with PQCD. The
results for the line integral in Eq.(13) are

(21)

∫ ∞

sj

ds

s
K(s)

1

π
ImΠq(s)|PQCD =

 151.8(1)× 10−7

20.0(4)× 10−7

3.4(2)× 10−7

with sj = (1.8, 5.0, 12.0)GeV2 for q = uds, c, b, respectively. Substituting the results from
Eqs.(20) and (21) into Eq.(13), together with the residues in the charm- and bottom-
quark sectors, Eqs. (16)-(17), the leading order aHADµ are [1]

(22) aHADµ |c = 14.4(1)× 10−10 ,

(23) aHADµ |b = 0.29(1)× 10−10 .

These results were fully confirmed later by LQCD calculations yielding aHADµ |c = 14.42(39)×
10−10 from [20], and aHADµ |b = 0.271(37)× 10−10 from [21].
The complete result for the anomaly can then be written as

(24) aHADµ =

{
16

3
α2
EM Res

[
Πuds(s)

K1(s)

s

]
s=0

+ 4.7(2)× 10−10

}
+ 14.7(1)× 10−10 ,

where the term in curly brackets corresponds to the light quark sector, and the last term
in the equation is the total charm- plus bottom-quark contribution. Using the quark-
hadron duality violation model of [4] with parameters from [5], we find this effect to be
negligible in comparison with the first term inside curly brackets.
The first two derivatives of the light-quark current correlator at the origin have been
calculated in LQCD [22] with the results

(25)
d

dq2
Π(s)uds|s=0 = 0.07190± 0.0025, GeV−2

(26)
d2

(dq2)2
Π(s)uds|s=0 = 0.136± 0.009, GeV−4 ,

where these values correspond to our definition and normalization of the QCD correlator,
Eqs.(4)-(5). Hence, the results of [22] must be multiplied by a factor 3/4. Notice that the
second derivative is related to the third term in Eq.(8), which is an order of magnitude
smaller, and of opposite sign than the second term, corresponding to the first derivative.
Even though the second order pole residue is thus small compared with the first order one,
it is not entirely negligible given the overall required accuracy. However, the contribution
of the pole of third order can be safely neglected due to its factorial suppression, as well
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as the relative size of the overall coefficient in Eq.(8). The value of the residue in the
light-quark sector becomes

(27) Res

[
Πuds(s)

K1(s)

s

]
s=0

= (0.240± 0.009)× 10−3 ,

and the complete anomaly, Eq.(24), is

(28) aHADµ = (701± 26) × 10−10.

Further improvement in precision will require more accurate LQCD results for the deriva-
tives of the electromagnetic current correlator.

3. – Electromagnetic pion radius contribution to aHADµ |ud

In closing, we discuss a procedure to relate the first derivative of the vector current
correlator to the electromagnetic radius of the pion. This information is useful in the
framework discussed in the previous section, Eqs. (24)-(25), i.e. to determine the residue
of the current correlator in the light-quark region. The leading order hadronic represen-
tation of the vector current correlator in Eq.(4), normalized as in Eq.(5), can be written
schematically as
(29)

Πµν |HAD(q2) = i

∫
d4x eiqx

{
⟨0|Vµ(x)|ππ⟩⟨ππ|V †

ν (0)|0⟩+ ⟨0|Vµ(x)|ρ⟩⟨ρ|V †
ν (0)|0⟩+ · · ·

}
,

where a four-momentum integral, and a sum over polarizations (for the ρ-meson) is im-
plicit, and the neglected terms are the multiple-pion matrix elements. The first term in
the integral above is loop-suppressed with respect to the Born, single rho-meson contri-
bution. A straightforward calculation of the second term in Eq.(29) gives

(30) Πµν |HAD(q2) = (qµqν − q2gµν)Π0(q
2) ,

with

(31)
d

dq2
Π0(s)|s=0 =

1

f2
ρ

1

6
⟨r2π⟩ = 0.0764± 0.0015GeV−2,

where fρ = 4.96 ± 0.02 [11], and ⟨r2π⟩ = 0.439 ± 0.008 fm2 [24]. Using this result would
give aHADµ = (775 ± 14) × 10−10. After subtracting a potential 5% contribution from

a second derivative gives aHADµ = (736 ± 14) × 10−10. These results, while involving
a few approximations/assumptions, provide further support for the value obtained in
Eq.(28) using current LQCD information on the first two derivatives of the vector current
correlator at the origin. The latter should be known in future from LQCD with much
improved precision.
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4. – Summary

In this paper we made use of a novel method, first proposed in [1], to determine the
leading hadronic contribution to the muon magnetic moment anomaly, g − 2, entirely
from theory. Given that this quantity has been exploited intensively as the culprit for
Physics beyond the Standard Model, it is imperative to determine it in the framework
of our current strong interaction theory, i.e. QCD. The essential tool to perform this
task is Cauchy’s theorem in the complex squared-energy plane (Fig.1), proposed long
ago [3] to relate QCD to hadronic Physics. Given the absence of singularities in the
complex squared-energy s-plane, except for a discontinuity across the real s-axis (due to
hadronic poles and resonances), one can relate QCD information on a circle of radius
|s0| to hadronic information on the real axis. Here, the radius |s0| is chosen large enough
for perturbative QCD to be valid on the circle, as well as large enough to cover relevant
hadronic contributions. In order to exploit Cauchy’s theorem to the fullest it is necessary
to replace the integration kernel K(s) entering the anomaly, Eq.(3), by meromorphic
kernels. These require information on the first few derivatives of the electromagnetic
correlator at the origin, which is being determined by LQCD [20]-[23]. These substitute
kernels in the light-, charm-, and bottom-quark sectors are essentially indistinguishable
from the original, as witnessed by the negligible differences of 0−1% in the (uds)-region,
0− 0.02% in the charm-sector, and 0− 0.0005% for bottom. Furthermore, a crucial test
was performed in the dominant light-quark sector by using all the available e+−e− data
together with the original kernel to compute aHADµ , and compare with the result from
using the substitute kernel K1(s). Fully supporting results are shown in Eqs.(9)-(10),
respectively.
Results from this approach in the charm- and bottom-quark sectors, Eqs.(22)-(23), are in
full agreement with LQCD determinations [20]-[21], thus providing additional validation
of our method. Nevertheless, the bulk of the contribution to the anomaly arises from
the light-quark sector, as indicated in Eq.(24). The great challenge is for LQCD to
provide values for the derivatives of the electromagnetic current correlator at the origin
with improved accuracy. A hint on a potential outcome is provided by the result for the
anomaly obtained using the experimental value of the electromagnetic radius of the pion
in Section 3.
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[17] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev. Lett. 101, 012002 (2008).
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