Top quark physics at CMS

Denys Lontkovskyi On behalf of the CMS collaboration

Electroweak and Top Physics 9 March, 2017

Introduction

- The heaviest elementary particle
- Decays before hadron formation
- Main production mechanisms at LHC:

- LHC has extensive top program:
 - Cross sections measurements
 - Mass determination
 - Top properties (asymmetries, spin correlation etc. (see here))
 - Searches for rare processes

- Improves understanding of:
 - pQCD predictions
 - PDFs
 - background to many searches

Introduction

- Measurements at \sqrt{s} =5,7,8 and 13 TeV
- Total cross section
- Single- and double-differential
- Mass determination
- Top properties

- Different production and decay channels:
 - different background contamination
 - different systematics

Top cross sections

▶ $t\bar{t}$ in $e\mu$ channel $\sqrt{s} = 13$ TeV

$$\sigma_{t\bar{t}} = 792 \pm 8(\text{stat}) \pm 37(\text{syst}) \pm 21(\text{lumi}) \,\text{pb} \quad (\pm 5.5\%)$$

$${
m SM}: \sigma_{tar{t}} = 832^{+40}_{-46}\,{
m pb}$$

Consistent with other CMS and ATLAS measurements and with the SM predictions

D. Lontkovskyi (VUB)

(arXiv:1611.04040)

▶ $t\bar{t}$ in single-lepton channel $\sqrt{s} = 13$ TeV

- Simultaneous fit to M_{lb} or min (M_{lb}) in multiple categories (lepton flavour, charge, N_b and N_j)
- Cross section measurement is consistent with previous measurements and with the SM predictions
- Pole mass extracted from the cross section measurement

$$\begin{aligned} \sigma_{t\bar{t}} &= 835 \pm 3(\text{st}) \pm 23(\text{sys}) \pm 23(\text{lum}) \, \text{pb} \, (\pm 3.9\%) \\ m_t &= 172.7^{+2.4}_{-2.7} \, \text{GeV} \quad \left(\begin{array}{c} +1.4 \\ -1.6 \end{array} \right) \quad \left(\text{using CT14PDF} \right) \end{aligned}$$

▶ $t\bar{t}$ in single-lepton channel $\sqrt{s} = 13$ TeV

(arXiv:1610.04191)

- 2015 data (2.3 fb⁻¹)
- Channel with largest branching fraction
- Single differential measurements unfolded to parton level for comparison with analytic predictions.
- Precise test of the validity of QCD at NLO+NLL, NNLO and approximate (N)NNLO

▶ $t\bar{t}$ in single-lepton channel $\sqrt{s} = 13$ TeV

(arXiv:1610.04191)

- The measured distributions are in agreement with the predictions of the event generators with some exceptions in the p_T(tt̄) and M(tt̄) distributions
- D. Lontkovskyi (VUB)

- p_T(t) is softer than predicted by most of the event generators
- The effect seen in Runl and also confirmed by ATLAS

▶ $t\bar{t}$ in dilepton channel $\sqrt{s} = 8$ TeV

- Single- and double-differential cross section measurements as function of p_T(t), y(t), M(tt), y(tt)
- Precision test of pQCD and valuable input for pPDF fits
- D. Lontkovskyi (VUB)

 Double-differential data significantly constrains gluon PDF in medium-x range

 10^{-1}

10⁻²

 10^{-3}

 The most powerful constrains come from M(tt
) and y(tt
)

- Improve over the baseline NLO+PS MC tuning both the PS scale and the UE
- Data prefer lower \(\alpha_S^{ISR}\) and higher \(h_{damp}\)
- Tuned α^{ISR}_S and h_{damp} values are found to be consistent with the ATLAS optimized values
- Affects mostly the description of extra jets
- p_T(t), M(tt̄), global event variables not significantly affected

▶ $t(\bar{t})$ in single- μ channel $\sqrt{s} = 13$ TeV

2.3 fb⁻¹ (13 TeV) 3000 Events / 0.2 CMS Data 2500 channel 2-jets-1-tag µ⁺ tī. tW 2000 W/Z+jets QCD 1500 Post-fit unc. 1000 500 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.6 0.8 0 0.4 MVA output Data Fit 0.8

- 2015 data (2.3 fb⁻¹)
- Channel with lowest systematic uncertainty
- Sensitivity to pPDFs and V_{tb}

 $R_{t-ch} = 1.81 \pm 0.18 ({\rm stat}) \pm 0.15 ({\rm syst})$

D. Lontkovskyi (VUB)

- Template fit of the MVA discriminator distribution in multiple categories
- The most precise total cross section at 13 TeV used to extract |Vtb|

 $\sigma_{t-ch,t} = 150 \pm 8(st) \pm 4(exp) \pm 11(th) \pm 4(lum)$

 $V_{tb} = 1.03 \pm 0.07(\exp) \pm 0.02(\text{theo})$

Top mass

▶ m_t from single- μ t production $\sqrt{s} = 8$ TeV (to be submitted to EPJC)

- Top mass measurement in t-channel enriched single-top production (75% purity)
- Different production mechanism featuring different color flow
- Independent cross check of tt
 mass determinations
- The most precise m_t extraction from single-top enriched data

$$m_t = 172.95 \pm 0.77 \; (st)^{+0.97}_{-0.93} \; (sys) {
m GeV}$$

 A new combination of the measurements using alternative/complementary techniques that were not included in the published CMS Run I result.

 $m_t = 172.58 \pm 0.21 \text{ (st)} \pm 0.72 \text{ (sys)} \text{GeV}$ (0.4%)

Legacy combination:

 $m_t = 172.44 \pm 0.13 \text{ (st)} \pm 0.47 \text{ (sys)} \text{GeV}$ (0.3%)

- Good agreement with the CMS Run I combination
- The precision of the new result makes this of the same order as the latest Tevatron and ATLAS combinations

▶ m_t in single- μ $t\bar{t}$ channel $\sqrt{s} = 13$ TeV

(TOP-16-022)

- New preliminary measurement using ideogram method
- Simultaneous mass determination and jet-energy calibration

$$\begin{split} m_t &= 172.62 \pm 0.38 \; (\rm{st} + \rm{JSF}) \pm 0.70 \; (\rm{sys}) \, \rm{GeV} \\ JSF &= 0.998 \pm 0.003 \; (\rm{st}) \pm 0.010 \; (\rm{sys}) \rm{GeV} \end{split}$$

- Simultaneous mass determination and jet-energy calibration
- Systematic uncertainty dominated by effects that cannot be compensated in simultaneous fit: non-tt background modelling, PS and hadronization

(to be submitted to EPJC)

▶ m_t from boosted top jets $\sqrt{s} = 8$ TeV

 $m_t = 170.8 \pm 6.0 (st) \pm 2.8 (sys) \pm 4.6 (mod) \pm 4.0 (th) \, GeV$

- Boosted top decays (p_T > 400 GeV)
- Fully merged jet topology
- D. Lontkovskyi (VUB)

- Test of the modelling of boosted top production
- Assessment of experimental sensitivity to m_t

• Measurement of $m_t - m_{\bar{t}} \sqrt{s} = 8 \text{ TeV}$

(arXiv:1610.09551)

- Measurement of the mass difference between hadronicaly decaying top quark and antiquark
- Systematic uncertainties partially cancel in the difference

 $\Delta m_t = 0.15 \pm 0.19 \text{ (st)} \pm 0.09 \text{ (sys)} \text{GeV}$

Consistent with CPT invariance prediction, $\Delta m_t = 0$

Searches for rare processes and BSM phenomena

Search for $t\bar{t}t\bar{t}$ production $\sqrt{s} = 13$ TeV

- Important in the context of BSM searches
- Template fit of the MVA discriminator distribution in multiple jet and b-tags categories
- Combination of the search results in three channels

95% CL $\sigma_{t\bar{t}t\bar{t}} < 69 (71^{+38}_{-24})$ fb 7.4 $(7.7^{+4.1}_{-2.6}) \times \sigma_{t\bar{t}t\bar{t}}^{SM}$

- 2016 data (12.9 fb⁻¹)
- Sensitivity to tZ coupling
- Measurements consistent with the SM predictions

$$\sigma(t\bar{t}Z) = 0.70^{+0.16}_{-0.15} \text{ (st)}^{+0.14}_{-0.12} \text{ (sys)pb}$$

$$\sigma \left(t \bar{t} W \right) = 0.98^{+0.23}_{-0.22} \text{ (st)}^{+0.22}_{-0.18} \text{ (sys)pb}$$

Search for tZ **Production** $\sqrt{s} = 8$ **TeV**

- Trilepton final state
- Data-driven estimate of non-prompt background
- 2.4 σ SM signal observed $\sigma_{tZ} = 10^{+8}_{-7}$ fb

SM :
$$\sigma \left(t l^+ \overline{l^- q} \right) \mathcal{B} \left(t \to l \nu b \right) = 8.2 \, \text{fb}$$

D. Lontkovskyi (VUB)

 The most stringent limit on Z-mediated FCNC in top sector

 $\mathcal{B}(t \to Zu) < 0.022\%$ @95% CL

 $\mathcal{B}\left(t
ightarrow \mathit{Zc}
ight) < 0.049\%$ @95% CL

Summary

- LHC is a top quark factory and has extensive top physics program
- CMS is finalising its 8 TeV results and has new measurements with 13 TeV data
- What has been shown:
 - Precise measurements of total, single- and double-differential top quark pair cross sections and total single top cross section at 8 and 13 TeV
 - New combined top quark mass value from the measurements using alternative techniques

 $m_t = 172.58 \pm 0.21 \text{ (st)} \pm 0.72 \text{ (sys)} \text{GeV}$ (0.4%)

New measurements and limits on rare processes involving top quarks

Many new results using 36 fb $^{-1}$ 13 TeV dataset follow soon!

http://cms-results.web.cern.ch/cms-results/publicresults/publications/TOP/index.html http://cms-results.web.cern.ch/cms-results/publicresults/preliminary-results/TOP/index.html

BACKUP

Source	Subcategory	Uncertainty (GeV)
Jet energy scale	In-situ correlation group	+0.20, -0.21
	Inter-calibration group	± 0.05
	Flavour-correlation group	±0.40
	Pileup p_T uncertainty	+0.18, -0.10
	Uncorrelated group	+0.48, -0.40
	Total	+0.68, -0.61
b quark JES and hadronisation model		± 0.15
Jet energy resolution		± 0.05
Muon momentum scale		± 0.05
p _T ^{miss}		± 0.15
Pileup		±0.10
b tagging efficiency		± 0.10
Fit calibration		±0.39
Background estimate	Shape	±0.10
	Normalisation	± 0.14
	$\mu_{ m R}$ and $\mu_{ m F}$ scales	± 0.18
	Matching scales	± 0.30
	Total	± 0.39
Generator model		± 0.10
Signal $\mu_{ m R}$ and $\mu_{ m F}$ scales		±0.23
Underlying event		±0.20
Colour reconnection		± 0.05
Parton distribution functions		±0.05
Total		+0.97, -0.93

► Top mass combination

Combined mt results	Legacy	Alternative	Combined	
	$\delta m_t (GeV)$	$\delta m_t (GeV)$	$\delta m_t (GeV)$	
Experimental uncertainties				
Method calibration	0.03	0.08	0.04	
Jet energy corrections				
- JEC: Intercalibration	0.01	0.06	0.02	
– JEC: In situ calibration	0.12	0.16	0.12	
– JEC: Uncorrelated non-pileup	0.10	0.26	0.10	
Lepton energy scale	0.01	0.13	0.01	
MET scale	0.03	0.04	0.04	
Jet energy resolution	0.03	0.03	0.03	
b tagging	0.05	0.02	0.05	
Pileup	0.06	0.07	0.06	
Secondary vertex mass	n/a	0.04	< 0.01	
Backgrounds	0.04	0.08	0.04	
Trigger	< 0.01	< 0.01	<0.01	
Modeling of hadronization				
JEC: Flavor	0.33	0.33	0.31	
b jet modeling	0.14	0.22	0.14	
Modeling of perturbative QCD				
PDF	0.04	0.11	0.04	
Ren. and fact. scales	0.10	0.31	0.10	
ME-PS matching threshold	0.08	0.22	0.08	
ME generator	0.11	0.08	0.11	
Single top modeling	n/a	0.04	0.01	
Top quark <i>p_T</i>	0.02	0.23	0.02	
Modeling of soft QCD				
Underlying event	0.11	0.11	0.11	
Color reconnection modeling	0.10	0.10	0.10	
Mass and Uncertainties (GeV)				
m _t	172.44			
Uncertainties (GeV)				
Total systematic	0.47	0.72	0.46	
Statistical	0.13	0.21	0.13	

D. Lontkovskyi (VUB)

(TOP-15-012)

	δmt	δJSF
Experimental uncertainties		
Method calibration	0.07	< 0.001
Jet energy corrections (quad. sum)	(0.30)	(0.006)
 JEC: InterCalibration 	0.03	< 0.001
– JEC: MPFInSitu	0.12	0.001
 – JEC: Uncorrelated non-pileup 	0.26	0.004
 – JEC: Uncorrelated pileup 	0.11	0.004
Muon energy scale	0.03	< 0.001
Jet energy resolution	0.04	0.001
b tagging	0.05	< 0.001
Pileup	0.01	0.001
Non- <i>tī</i> background	0.19	0.001
Modeling of hadronization		
JEC: Flavor-dependent	0.41	0.001
b-jet modeling	0.18	< 0.001
Modeling of perturbative QCD		
PDF	0.09	0.001
Ren. and fact. scale	< 0.01	< 0.001
Parton shower scale	0.23	0.001
ME generator	0.12	0.001
Top quark transverse momentum	0.01	< 0.001
Modeling of soft QCD		
Underlying event	0.18	0.007
Color reconnection modeling	0.22	0.001
Systematic	0.70	0.010
Statistical (expected)	0.38	0.003
Total (expected)	0.80	0.010

(TOP-12-039/1702.01404)

- A search for the production of a single top quark in association with a Z boson
- 2.4 s.d. SM signal observed
- Limits on $t \rightarrow Zu$ and $t \rightarrow Zc$ decays are established

► *h*-mediated FC *t* decays $\sqrt{s} = 8$ TeV (TOP-13-017/arXiv:1610.04857)

- A search is performed for Higgs-boson-mediated flavor-changing neutral currents in the decays of top quarks
- Template fit to ANN discriminant was performed to estimate signal strength
- Observations are consistent with the SM predictions

- Single top channel.
- A Bayesian neural network technique, used to discriminate between the signal and backgrounds.
- Dedicated training to separate SM left-handed interactions from one of the anomalous interactions
- Stringent limits on anomalous couplings

Limits on anomalous couplings are established

CP violation in $t\bar{t}$ system $\sqrt{s} = 8$ TeV (TOP-16-001/arXiv:1611.08931)

Runl dataset (19.7
$${
m fb}^{-1}$$
)

$$\begin{aligned} O_2 &= \epsilon \left(P, p_b + p_{\bar{b}}, p_l, p_{j1} \right), \\ O_3 &= Q_l \epsilon \left(p_b, p_{\bar{b}}, p_l, p_{j_1} \right), \\ O_4 &= Q_l \epsilon \left(P, p_b - p_{\bar{b}}, p_l, p_{j_1} \right), \\ O_2 &= q \cdot \left(p_b - p_{\bar{b}} \right) \epsilon \left(P, q, p_l, p_{j_1} \right). \\ A_{\rm CP}(O_i) &= \frac{N(O_i > 0) - N(O_i < 0)}{N(O_i > 0) + N(O_i < 0)} \end{aligned}$$

- A first search for CP violation in the production and decay of tt
- No evidence for CP-violating effects
- Consistent with the expectation from the standard model

► FCNC searches in top sector

- Searches for *H*, γ, *Z*, *g*- mediated processes in top sector
- Limits approach predictions from various BSM models with FCNC

