Progress in top quark physics

Eleni Vryonidou Nikhef

LES RENCONTRES DE PHYSIQUE DE LA VALLEE D'AOSTE La Thuile 9/3/2016

LHC: the story so far

Rediscovering the SM

Higgs discovery

Good agreement with the SM predictions

Search for New Physics continues

Top quark physics

Why is the top quark special-given the 125 GeV Higgs? 1. The heaviest SM quark Strong interaction with the Higgs: yt=1

A special role in EWSB?

Important for stabilising the Higgs mass: top partners?

 $m_H^2 = m_{H0}^2 \qquad -\frac{3}{8\pi^2} y_t \Lambda^2 \qquad +\frac{1}{16\pi^2} g^2 \Lambda^2 \qquad +\frac{1}{16\pi^2} \lambda^2 \Lambda^2$ $(125\,\text{GeV})^2 = m_{H0}^2 + \left[-(2\,\text{TeV})^2 + (700\,\text{GeV})^2 + (500\,\text{GeV})^2\right] \left(\frac{\Lambda}{10\,\text{TeV}}\right)^2$ 2. Decay before hadronisation $\tau_{top} \approx h/\Gamma_{top} = 1/(G_F m_t^3 |V_{tb}|^2/8\pi\sqrt{2}) \approx 5 \bullet 10^{-25} s$ spin correlations

Top quark physics at the LHC

3. Rich phenomenology at the LHC:

Millions of top quarks at the LHC: precise measurements E.Vryonidou

Precision top calculations

Associated production

t(t)+X with X=H,Z,photon,W actively studied and searched for

Why?

- $t(\bar{t})V$: Direct probe of top couplings to the EW gauge bosons
- t(T)H: Direct probe of top Yukawa coupling
- tt
 V(V): main background for tt
 H searches
- tops+V(s): Important as a signal as well as a background for BSM scenarios with high multiplicity signatures
- High threshold processes: accessible for the first time at the LHC, important for LHC13

Precision: NLO+PS (+NNLL)

Status of precision studies for t(t)V(V)

tH QCD: NLO+PS MG5_aMC@NLO: Demartin et al. arXiv:1504.00611	tZ QCD: NLO+PS MG5_aMC@NLO:arXiv:1405.0301 MCFM: arXiv:1302.3856	tWH QCD: NLO+PS MG5_aMC@NLO: Demartin et al arXiv:1607.05862
ttH QCD: NLO+PS aMC@NLO: arXiv:1104.5613 PowHel: arXiv:1108.0387 Powheg Box: arXiv:1501.04498 Soft gluon resummation- beyond NLO: Kulesza et al. arXiv:1509.02780 Broggio et al. arXiv:1510.01914	ttZ/W QCD: NLO+PS aMC@NLO: arXiv:1103.0621 PowHel: arXiv:1111.1444, 1208.2665 Soft gluon resummation for ttW: Broggio et al. arXiv:1607.05303 NLO EW: Frixione et al. arXiv:1504.03446	t̄tZZ, t̄tŴW, t̄tŴZ t̄tZγ, t̄tŴγ QCD: NLO+PS MG5_aMC@NLO: Maltoni et al. arXiv:1507.05640
Off-shell: Denner et al. arXiv:1506.07448 NLO EW: Frixione et al. arXiv:1407.0823 & arXiv:1504.03446 Zhang et al. arXiv:1407.1110	tτγ QCD: NLO+PS aMC@NLO: arXiv:1103.0621 PowHel: arXiv:1406.2324	ttγγ NLO+PS PowHel: Kardos et al. arXiv: 1408.0278 aMC@NLO: Maltoni et al. arXiv: 1507.05640 van Deurzen et al. arXiv: 1509.02077

SM: precision for top processes

- QCD, EW corrections
- Resummation
- Off-shell and interference effects
- Monte Carlo tools
 Needed to realistically describe top quark processes at the LHC

SM: precision for top processes

- QCD, EW corrections
- Resummation
- Off-shell and interference effects
- Monte Carlo tools
 Needed to realistically describe top quark processes at the LHC

SM precision allows us to use top production and decay as a probe of new physics

SM: precision for top processes

- QCD, EW corrections
- Resummation
- Off-shell and interference effects
- Monte Carlo tools
 Needed to realistically describe top quark processes at the LHC

SM precision allows us to use top production and decay as a probe of new physics

Look for deviations from SM predictions in LHC measurements

SM: precision for top processes

- QCD, EW corrections
- Resummation
- Off-shell and interference effects
- Monte Carlo tools
 Needed to realistically describe top quark processes at the LHC

SM precision allows us to use top production and decay as a probe of new physics

How do we look for new physics? A BSM strategy needed

Look for deviations from SM predictions in LHC measurements

How to look for new physics?

Model-dependent

SUSY, 2HDM...

New particles

Resonance peaks

E.Vryonidou

Model-Independent

simplified models,EFT

New Interactions of SM particles

anomalous couplings, EFT

Typically deviations in tails

Model dependent An example: Resonances in ttbar

Hespel, Maltoni, EV arXiv:1606.04149 E.Vryonidou

See also Ellis, Djouadi, Quevillon arXiv:1605.00542 Carena, Liu arXiv: 1608.07282, Bernreuther et al. arXiv:1511.0558

New physics without new light particles

No new light states

New Interactions of SM particles

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$

• Operators at dim-6:

Buchmuller, Wyler Nucl. Phys. B268 (1986) 621-653

	X^3	$arphi^6$ and $arphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$	$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{\varphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Grzadkowski et al arxiv:1008.4884

	$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$			B-viol	<i>B</i> -violating			
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$				
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^\gamma)^T C e_t\right]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$				
$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$				
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^\alpha)^T C u_r^\beta\right]\left[(u_s^\gamma)^T C e_t\right]$				

Top-quark operators and how to look for them

Top-quark operators and how to look for them

Operators entering various processes: Global approach needed

Towards global fits

EFT only makes sense if we follow a global approach First work towards global fits: TopFitter: Buckley et al arxiv:1506.08845 and 1512.03360

Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.	Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.
Top pair pr	oduction						
Total cross-	sections:			Differential	cross-sections	C	
ATLAS	7	lepton+jets	1406.5375	ATLAS	7	$p_T(t), M_{t\bar{t}}, y_{t\bar{t}} $	1407.0371
ATLAS	7	dilepton	1202.4892	CDF	1.96	M _{tt}	0903.2850
ATLAS	7	lepton+tau	1205.3067	CMS	7	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1211.2220
ATLAS	7	lepton w/o b jets	1201.1889	CMS	8	$p_T(t), M_{t\bar{t}}, y_t, y_{t\bar{t}}$	1505.04480
ATLAS	7	lepton w/ b jets	1406.5375	Dø	1.96	$M_{t\bar{t}}, p_T(t), y_t $	1401.5785
ATLAS	7	tau+jets	1211.7205				
ATLAS	7	$t\bar{t}, Z\gamma, WW$	1407.0573	Charge asyr	nmetries:		
ATLAS	8	dilepton	1202.4892	ATLAS	7	A_C (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1311.6742
CMS	7	all hadronic	1302.0508	CMS	7	A_C (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1402.3803
CMS	7	dilepton	1208.2761	CDF	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1211.1003
CMS	7	lepton+jets	1212.6682	Dø	1.96	A_{FB} (inclusive+ $M_{t\bar{t}}, y_{t\bar{t}}$)	1405.0421
CMS	7	lepton+tau	1203.6810				
CMS	7	tau+jets	1301.5755	Top widths:			
CMS	8	dilepton	1312.7582	Dø	1.96	Γ _{top}	1308.4050
$CDF + D\emptyset$	1.96	Combined world average	1309.7570	CDF	1.96	Γ _{top}	1201.4156
Single top p	roduction			W-boson he	licity fraction	SI	
ATLAS	7	t-channel (differential)	1406.7844	ATLAS	7		1205.2484
CDF	1.96	s-channel (total)	1402.0484	CDF	1.96		1211.4523
CMS	7	t-channel (total)	1406.7844	CMS	7		1308.3879
CMS	8	t-channel (total)	1406.7844	Dø	1.96		1011.6549
Dø	1.96	s-channel (total)	0907.4259				
Dø	1.96	t-channel (total)	1105.2788				
Associated	production			Run II data			
ATLAS	7	$t\bar{t}\gamma$	1502.00586	CMS	13	$t\bar{t}$ (dilepton)	1510.05302
ATLAS	8	tīZ	1509.05276				
CMS	8	$t\bar{t}Z$	1406.7830				

Tevatron and LHC data Cross-sections and distributions E.Vryonidou

Limits on Wilson coefficients

How can we improve the fits?

 Need at least NLO in QCD to match the SM precision and experimental accuracy: SMEFT@NLO

Recent progress:

- top pair production: Franzosi and Zhang (arxiv:1503.08841)
- single top production: C. Zhang (arxiv:1601.06163)
- ttZ/γ: O. Bylund, F. Maltoni, I. Tsinikos, EV, C. Zhang (arXiv:1601.08193)
- ttH: F. Maltoni, EV, C. Zhang (arXiv:1607.05330)

All automated within MadGraph5_aMC@NLO NLO+PS: realistic simulations R2+UV counterterms: NLOCT Degrande (arxiv:1406.3030)

Top pair + Z/γ

probe of top neutral couplings: ttZ,ttγ,ttg

SM σ(ttZ)=0.88 pb at 13TeV LHC (ATLAS): σ(ttZ) =0.92±0.29(stat)±0.10(syst) pb

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{(\Lambda/1\text{TeV})^2} \sigma_i^{(1)} + \sum_{i \leq j} \frac{C_i C_j}{(\Lambda/1\text{TeV})^4} \sigma_{ij}^{(2)}$$

$13 \mathrm{TeV}$	\mathcal{O}_{tG}	${\cal O}_{\phi Q}^{(3)}$	$\mathcal{O}_{\phi t}$	\mathcal{O}_{tW}
$\sigma^{(1)}_{i,LO}$	$286.7^{+38.2\%}_{-25.5\%}$	$78.3^{+40.4\%}_{-26.6\%}$	$51.6^{+40.1\%}_{-26.4\%}$	$-0.20(3)^{+88.0\%}_{-230.0\%}$
$\sigma^{(1)}_{i,NLO}$	$310.5^{+5.4\%}_{-9.7\%}$	$90.6^{+7.1\%}_{-11.0\%}$	$57.5^{+5.8\%}_{-10.3\%}$	$-1.7(2)^{+31.3\%}_{-49.1\%}$
K-factor	1.08	1.16	1.11	8.5
$\sigma^{(2)}_{ii,LO}$	$258.5^{+49.7\%}_{-30.4\%}$	$2.8(1)^{+39.7\%}_{-26.9\%}$	$2.9(1)^{+39.7\%}_{-26.7\%}$	$20.9^{+44.3\%}_{-28.3\%}$
$\sigma^{(2)}_{ii,NLO}$	$244.5^{+4.2\%}_{-8.1\%}$	$3.8(3)^{+13.2\%}_{-14.4\%}$	$3.9(3)^{+13.8\%}_{-14.6\%}$	$24.2^{+6.2\%}_{-11.2\%}$

Bylund et al arXiv:1601.08193

E.Vryonidou

 $\begin{aligned} & \text{Operators} \\ & O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ & O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ & O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ & O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ & O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ & O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \end{aligned}$

A sensitivity study

arXiv:1601.08193

ttH in the EFT

ttH@NLO

 $(O_{t\phi}, O_{\phi G}, O_{tG})$

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

 $\frac{dC_i(\mu)}{d\log\mu} = \frac{\alpha_s}{\pi} \gamma_{ij} C_j(\mu) \qquad \gamma = \begin{pmatrix} -2 & 16 & 8 \\ 0 & -7/2 & 1/2 \\ 0 & 0 & 1/3 \end{pmatrix}$ Running and mixing Alonso et al. arxiv:1312.2014

dim-6 dim-5 dim-4 $O_{tG} O_{\phi G} O_{t\phi}$

 σ

Higher-dimension operators mix into lowerdimension ones

Setup allows computation of:

E.Vryonidou

$$= \sigma_{\rm SM} + \sum_{i} \frac{1 \,{\rm TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \le j} \frac{1 \,{\rm TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}.$$

interference with SM interference between operators, squared contributions

ttH cross-section results

13 TeV	σ NLO	к
σ_{SM}	$0.507_{-0.048-0.000-0.008}^{+0.030+0.000+0.007}$	1.09
$\sigma_{t\phi}$	$-0.062\substack{+0.006+0.001+0.001\\-0.004-0.001-0.001}$	1.13
$\sigma_{\phi G}$	$0.872_{-0.123-0.035-0.016}^{+0.131+0.037+0.013}$	1.39
σ_{tG}	$0.503_{-0.046-0.003-0.008}^{+0.025+0.001+0.007}$	1.07
$\sigma_{t\phi,t\phi}$	$0.0019\substack{+0.0001+0.0001+0.0000\\-0.0002-0.0000-0.0000}$	1.17
$\sigma_{\phi G,\phi G}$	$1.021_{-0.178-0.085-0.029}^{+0.204+0.096+0.024}$	1.58
$\sigma_{tG,tG}$	$0.674\substack{+0.036+0.004+0.016\\-0.067-0.007-0.019}$	1.04
$\sigma_{t\phi,\phi G}$	$-0.053\substack{+0.008+0.003+0.001\\-0.008-0.004-0.001}$	1.42
$\sigma_{t\phi,tG}$	$-0.031\substack{+0.003+0.000+0.000\\-0.002-0.000-0.000}$	1.10
$\sigma_{\phi G,tG}$	$0.859\substack{+0.127+0.021+0.017\\-0.126-0.020-0.022}$	1.37
$\sigma=\sigma_{\rm SM}$	$+\sum_{i} \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq i} \frac{1 \text{TeV}^4}{\Lambda^4}$	$-C_i C_j \sigma_{ij}$

- Different K-factors for different operators, different from the SM
- Large 1/Λ⁴ contribution for the chromomagnetic operator

How should we treat $O(1/\Lambda^4)$ terms?

EFT condition: $E < \Lambda$

EFT condition satisfied but $O(1/\Lambda^4)$ large for large operator coefficients

$$C_i^2 \frac{E^4}{\Lambda^4} > C_i \frac{E^2}{\Lambda^2} > 1 > \frac{E^2}{\Lambda^2}$$

To be checked on a case-by-case basis

 Constraints from top pair production: _{ctG}=[-0.42,0.30] Franzosi and Zhang arxiv:1503.08841

Differential distributions for ttH

NLO: smaller uncertainties, non-flat K-factors

Different shapes for different operators for the squared terms

Maltoni, EV, Zhang arXiv:1607.05330

Top and Higgs

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

See also Degrande et al. arXiv:1205.1065 Grojean et al. arXiv:1312.3317 Azatov et al arXiv:1608.00977

Use with 1) ttH and 2) H, H+j to break degeneracy between operators and extract maximal information on these operators

E.Vryonidou

Maltoni, EV, Zhang: arXiv:1607.05330

SMEFT in H+j and HH

Constraints on the Wilson coefficients

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q} t \right) \tilde{\phi} \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \end{split}$$

Toy χ² fit for illustrative purposes using: single H, ttH Run I and Run II results Impact of the 3 operators also included in Higgs decays

	Individual	Marginalised	C_{tG} fixed	
$C_{t\phi}/\Lambda^2 \; [{\rm TeV}^{-2}]$	[-3.9, 4.0]	[-14, 31]	[-12,20]	
$C_{\phi G}/\Lambda^2 \; [{\rm TeV^{-2}}]$	[-0.0072, -0.0063]	[-0.021, 0.054]	[-0.022, 0.031]	90 /0 0
$C_{tG}/\Lambda^2 \; [{\rm TeV}^{-2}]$	[-0.68, 0.62]	[-1.8, 1.6]		

- Individual limit on C_{tG} comparable to the one from top pair production-room to improve with ttH measurement in run II
- Including the chromomagnetic operator leaves much more space to the other two operators

typically C_{tG}=0 in Higgs analyses

Constraints from ttH and Higgs production

Summary

- Significant progress for precise predictions for top production in the SM: higher orders, resummation, Monte Carlo tools
- Higher-order corrections needed to match improving experimental accuracy
- Top processes a playground for new physics searches: new particles or new top interactions
- SMEFT a framework to look for new interactions
- Precision needed also for EFT predictions to obtain more reliable constraints
- QCD corrections important both for total cross-sections and distributions: SM k-factors are not enough
- Global fits results already available: important to include NLO predictions where available
- Input from Higgs and loop-processes is important in global fits

Thank you for your attention