Heavy Flavour Production & Spectroscopy at LHCb

Jolanta Brodzicka (Univ. of Manchester) on behalf of LHCb

Les Rencontres de Physique de la Vallée d'Aoste LaThuile, March 2017

Outline

- Production introduction
- J/ψ from jets
- double J/ψ at 13TeV
- b-production at 13TeV
- b-hadron production asymmetry
- Spectroscopy introduction
- News on pentaquarks
- Family $X \rightarrow J/\psi \phi$
- Summary

Production of heavy flavours (b & c)

- How much & how produced (hadrons/quarkonia, jets)
- Total & diff. x-sections, asymmetries, particle correlations
- ➡ dominant: gluon-gluon fusion via SPS
- important for sensitivities of NP searches
- huge x-sections O(mb) produced forward/backward
- ⇒ SPS + sub-dominant (DPS, CEP, weak prod.)
- probes of QCD in both perturbative & non-perturbative (!) regimes
- test production & fragmentation models used in simulations

Single Parton Scattering (SPS)

Double Parton Scattering (DPS)

Unique input from LHCb

- LHCb: forward spectrometer 2<η<5
 ⇒ complements Atlas/CMS
- Probes partons with low/high momentum fraction (Bjorken x)
- Gluon PDF at x<10⁻⁴ has large uncertainties

arXiv:1612.07451

Double J/ψ @ √s=13TeV

DPS

J/ψ

J/ψ

- Contribution from Double Parton Scattering
- J/ψ's independent unless partons in proton correlated
 ⇒ overlap of partons: σ_{eff} ~O(10mb). Universal?
- Prompt J/ ψ (not from b)

SPS & DPS contribute. DPS disentangled ⇒σ_{eff}: 9-14 mb (model dep)
 JolantaBrodzicka@LaThuile2017

arXiv:1701.05116 submitted to PRL

J/ ψ in jets @ $\sqrt{s}=13$ TeV

- J/ψ from direct parton scattering (isolated) or through parton showers (in jets)?
- b,c-jet tagging: displaced vertex + MVA (ε~65%, 25%)
- $z(J/\psi)=p_T(J/\psi)/p_T(jet)$

g 000000000 J/ψ g J/ψ

- Prompt J/ψ less isolated than in Pythia generator (used in LHCb)
 ⇒ J/ψ from parton showers
- Explains lack of J/ψ polarisation? (Longstanding puzzle)
 JolantaBrodzicka@LaThuile2017

PRL 118, 052002 (2017) b-quark production @ √s=7&13TeV

- $b\underline{b}$ x-section: $pp \rightarrow H_b X$ with semileptonic decays: $H_b \rightarrow D\mu X$, $D_s\mu X$, $\Lambda_c\mu X \Rightarrow B$, B_s and Λ_b
- Others: $B_c \sim 0.1\%$, baryons Ξ_b , $\Omega_b \sim 25\%$ of Λ_b
- Signal from M(charm) and IP(charm+µ)

- Total 7TeV: $\sigma_{bb} = 72 \pm 0.3 \pm 6.8 \ \mu b$ 13TeV: $\sigma_{bb} = 154 \pm 1 \pm 14 \ \mu b$
- Ratio 13/7: 2.14 ± 0.02 ± 0.13 (Prediction: 1.8 ± 0.2)
- b<u>b</u> x-section extrapolated to full η: ~600 μb @13TeV

New Asymmetry in b & <u>b</u> production @ 7, 8TeV

- Important also for CP violation studies
- pp collisions ⇒ more b-baryons ⇒ more anti-B to compensate
- Measure signal asymmetry for:
- $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$, $B_s^0 \rightarrow D_s^- \pi^+$
- M(B) and decay time for B⁰_(s) to account for B-oscillations
- Asymmetry significance up to 2.5σ

Production asymmetries @ 8TeV

 $A_P(H_b) = \frac{\sigma(H_b) - \sigma(H_b)}{\sigma(H_b) + \sigma(\overline{H_b})}$

$$A \quad (P^+) = (-0.7 \pm 0.1 \pm 0.2)\%$$

Spectroscopy of heavy flavours

- QCD is generous...
- Conventional hadrons Exotic = more complex; also allowed

- Trends in spectroscopy studies: more excited and more complex hadrons
- Tests of potential models, lattice QCD
- Can we correctly model hadron multiplets? masses, widths, transitions/decays
- Can we understand exotics?

Gluon hybrids

Spectroscopy Renaissance: thanks to Belle & BaBar

M(π⁺ψ[']) (GeV)

Excited D_s mesons: didn't fit any models $D_{s1}(2460)$ 80 d) 450 $D_{s0}^{*}(2317)$ °∪ 400 350 ₩ 300 Ω 250 60 events/ 40 200 150 100 20 50 0 0 2.2 2.3 2.4 2.5 2.1 0.25 $m(D_s\pi^0)$ $m(D_{s}^{*}\pi^{0})-m(D_{s}^{*})$ Charmonium-like **X**,**Y** states at ~4 GeV: cc or 4-quarks? $Z_{c}(4430)^{+}$ 'Charged' quarkonia Z⁺ Events/0.01 GeV 0 $m(\psi'\pi^+)$ must be 4-quark states! 10 $Z_{c}(4430)^{+}:[ccud]$ JolantaBrodzicka@LaThuile2017 3.8 4.05 4.55 4.8

PRL 90, 242001 (2003) PRD69, 031101 (2004) PRL 91, 262001 (2003) PRL100, 142001 (2008)

From LHCb, with precision, model indep. & extras

PRL 115, 072001 (2015)

Pentaquarks: at first sight

JolantaBrodzicka@LaThuile2017

PRL 117, 082002 (2016)

Pentaquarks: model indep. approach

- Did we model pK resonances in $\Lambda_b \rightarrow J/\psi pK$ well enough?
- Describe $\Lambda^* \rightarrow pK$ with minimal assumption
- m(Kp) vs. cosθ_{Λ*} ⇒ Angular moments <P_L> of Λ* helicity angle rank L ≤ 2J_{max} where J_{max} is max spin of Λ*; depends on m(Kp)

Data inconsistent with only Λ*'s at 10σ
 ⇒ Pentaquarks needed!

PRL 117, 082003 (2016)

Pentaquarks: produced elsewhere?

- Study of $\Lambda_b \rightarrow J/\psi p \pi^-$ (before $\Lambda_b \rightarrow J/\psi p K^-$)
- More complicated dynamics: $N^* \rightarrow p\pi + P_c^+ \rightarrow J/\psi p + Z_c^- \rightarrow J/\psi \pi^-$
- Contribution from exotics ~3σ (with systematics)

Puzzling $X \rightarrow J/\psi \phi$

CDF arXiv: 1101.6058
LHCb PRD 85, 091103 (2012)
CMS PLB 734, 261 (2014)
D0 PRD 89, 012004 (2014)

• No evidence seen by Belle/Babar

• JolantaBrodzicka@LaThuile2017

$X \rightarrow J/\psi \phi$ Family

PRL 118, 022003 (2017) PRD 95, 012002 (2017)

🗕 data

– total fit

-*- 1⁺ NR_{ϕK}

 $\rightarrow K(1^+)$

 $- \overline{K'}(1^+)$

 $\rightarrow K^*(1)$

 $\rightarrow K(0)$

- K(2) + K'(2)

 \ge 1⁺ X (4140)

 \longrightarrow 1⁺ X (4274) $\xrightarrow{}$ 0⁺ X (4500)

 $\frac{1}{100} 0^{+} X (4700)$

 $\longrightarrow 0^+ \operatorname{NR}_{J/\psi\phi}$

background

• **Four** $X \rightarrow J/\psi \phi$ **needed**; broader than seen by CDF/CMS

State	Signif	J^{PC}	M [MeV]	$\Gamma \ [{\rm MeV}]$
X(4140)	8.4σ	1^{++}	$4160 \pm 4^{+5}_{-3}$	$83 \pm 21^{+21}_{-14}$
X(4274)	5.8σ	1^{++}	$4273 \pm 8^{+17}_{-4}$	$56 \pm 11^{+8}_{-11}$
X(4500)	6.1σ	0^{++}	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$
X(4700)	5.6σ	0^{++}	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$

- All won't fit cc spectrum
- D_s*D_s* molecules or tetraquarks?
- No single model can acommodate them all

JolantaBrodzicka@LaThuile2017

Summary

Production

- Many news in strong production of b&c
- Understand more J/ψ production
- Also weak production (W + QQ jets) and t<u>t</u> prodcution PLB 767 (2017) 110-120
- Heavy flavours in nuclear collisions

Spectroscopy

- Exploring & x-checking pentaquarks
- More c<u>c</u>-like states: four $X \rightarrow J/\psi \phi$
- Also 'conventional' spectroscopy excited $\Lambda_c \rightarrow D^0 p$ arXiv:1701.07873; D** $\rightarrow D\pi$ arXiv:1608.01289
- Missing: $\Xi_{cc'} \Xi_{bc'} \dots$
- Ready for surprises

Backups

Pentaquarks: model indep. approach

• Test sensitivity to different P_c scenarios based on ampl. models

LHCb-CONF-2017-001 J/ ψ and D from pAr @ $\sqrt{s_{NN}}$ =110GeV

- First results from LHCb in fixed-target mode
- Proton collisions on gas injected into a beam pipe

• Way to probe QQ production in high density/temp QCD

• JolantaBrodzicka@LaThuile2017

arXiv:1612.07451 Disentangling DPS and SPS

• Example of templated fits for (best?) SPS model

JolantaBrodzicka@LaThuile2017

JHEP 03 (2016) 159 JHEP 09 (2016) 013

open charm @ 13TeV

- charm promptly produced in pp, 1<p_T<8GeV
- exclusive decays of D^0 , D^+ , D_s and D^{*+}

 $\begin{aligned} \sigma(pp \to D^0 X) &= 2460 \pm 3 \pm 130 \,\mu\text{b} \\ \sigma(pp \to D^+ X) &= 1000 \pm 3 \pm 110 \,\mu\text{b} \\ \sigma(pp \to D_s^+ X) &= 460 \pm 13 \pm 100 \,\mu\text{b} \\ \sigma(pp \to D^{*+} X) &= 880 \pm 5 \pm 140 \,\mu\text{b} \end{aligned}$

