Production of quarkonia states with the ATLAS detector

Lailin Xu

Brookhaven National Lab

On behalf of the ATLAS collaboration

La Thuile 2017, March 5-11

Lailin Xu

Quarkonium production at the LHC

- The production mechanism of heavy quarkonia is a long-standing and intriguing problem in QCD
 - Involves both perturbative and nonperturbative QCD
 - No complete theory yet: Colour-Singlet Model (CSM), NRQCD with Colour-Octet Mechanism (COM), k_T factorization, etc.
 - Predictions are expected to be more reliable at high p_T region

- More recently, through novel exclusive production modes such as di-J/ψ and W/Z+J/ψ, quarkonia can provide an interesting window into:
 Study of multiple parton interactions (MPI)
 - While also providing new observables for testing production calculations

Quarkonia measurements in ATLAS

- A wide program of studies of quarkonia production is performed with the ATLAS detector:
 - Charmonia and bottomonia production
 - Charmed mesons and beauty mesons
 - Associated production: $J/\psi + W$, $J/\psi + Z$ and $J/\psi + J/\psi$
- Mostly in exclusive decays with di-/multi-muon final states, which allows to trigger low- p_T objects

- Recent results:
 - ψ (2S) and X(3872) production measurements at 8 TeV
 - Prompt J/ ψ pair production measurements at 8 TeV

https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/BPhysPublicResults

$\psi(2S)$ and X(3872) production measurements

Lailin Xu

What is X(3872)?

- "Exotic" resonance first observed by Belle in 2003
- Soon after confirmed by BaBar, CDF, D0 and now LHC experiments
- $J^{PC} = 1^{++}$; mass = 3871.69 ± 0.17 MeV \rightarrow very close to the D⁰D^{0*} threshold

ATLAS presents a new measurement that may help answer some of these questions, and/or create new ones

Overview of the analysis

- Decay mode: J/ $\psi \pi^+ \pi^-$, with J/ $\psi \rightarrow \mu^+ \mu^-$, 11.4 fb⁻¹ of 8 TeV ATLAS data
- Rapidity range |y| < 0.75, p_T range of $J/\psi \pi^+ \pi^- = (10 70)$ GeV
- Corrections for detector geometry and efficiencies are applied on a per-event basis
- The production cross sections of the ψ(2S) and X(3872) states are measured in five p_T bins

Fits on effective pseudo-proper lifetime τ performed to separate the signal into prompt and non-prompt components

Inclusive $\psi(2S)$ and X(3872) signals extraction $\mathcal{F}_{\text{EXPERIMENT}}$

- In each p_{T} bin, events are further split into 4τ bins
- Mass fit in each (p_{T}, τ) bin to determine the $\psi(2S)$ and X(3872) yields

Lailin Xu

Lifetime fit (1)

• Perform lifetime fit to the 4 τ bins in each p_{T} bin, separately for $\psi(2S)$ and X(3872): $F^{i}(\tau) = (1 - f^{i}_{NP})F^{i}_{P}(\tau) + f^{i}_{NP}F^{i}_{NP}(\tau)$,

Single lifetime fit (1L):

With only one single "effective pseudo-proper lifetime" au_{eff} fitted to the data.

The signal from X(3872) at low p_T tends to have shorter lifetimes \rightarrow Possibly hinting at a different production mechanism at low p_T ?

Lifetime fit (2)

• Perform lifetime fit to the 4 τ bins in each p_{T} bin, separately for $\psi(2S)$ and X(3872): $F^{i}(\tau) = (1 - f_{NP}^{i})F_{P}^{i}(\tau) + f_{NP}^{i}F_{NP}^{i}(\tau)$,

Two lifetime fit (2L):

To further separate the short-lived (B_c^{\pm}) and

long-lived (B^{\pm} , B^{0} , B_{s} mesons and *b*-baryons) components:

Using the ratio of short-lived of $X(3872)/\psi(2S)$, the fraction of non-prompt X(3872) from short-lived sources is determined:

 $F_{\rm NP}^i(\tau) = (1 - f_{\rm SL}^i)F_{\rm LL}(\tau) + f_{\rm SL}^iF_{\rm SL}(\tau).$

 $\frac{\sigma(pp \to B_c)\mathcal{B}(B_c \to X(3872))}{\sigma(pp \to \text{non-prompt }X(3872))} = (25 \pm 13(\text{stat}) \pm 2(\text{sys}) \pm 5(\text{spin}))\%,$

→ Suggested strong enhancement of X(3872) production in B_c decays ?

X(3872) differential cross sections:

10

Prompt J/ ψ pair production measurements

Eur. Phys. J. C77 (2017) 76

Why measure J/ψ pair production?

- Quarkonia pair production:
 - Depends heavily on the production mechanism
 - Sensitive to high order QCD corrections
 - Dominated by single parton scattering (SPS), but double parton scattering (DPS) can also play an important role
- DPS:
 - Probe proton structure
 - Background to new physics searches

- Focused on prompt–prompt (**PP**) di- J/ψ production, with the decay $J/\psi \rightarrow \mu^+\mu^-$, 11.4 fb⁻¹ of 8 TeV ATLAS data
- Corrections for detector geometry and efficiencies are applied to data
- The PP di- J/ψ signal is extracted sequentially by removing the background:
 - Non-J/ ψ background, non-prompt background, pile-up background

Total number of events observed: **1210**

After background subtraction: **1160 ± 70**

- Differential cross-sections are measured
- SPS and DPS components are determined, and the effective cross-section of DPS σ_{eff} is measured

$$\sigma_{\rm eff} \,=\, \frac{1}{2} \frac{\sigma_{J/\psi}^2}{\sigma_{\rm DPS}^{J/\psi,J/\psi}} \,=\, \frac{1}{2} \frac{\sigma_{J/\psi}^2}{f_{\rm DPS} \times \sigma_{J/\psi J/\psi}}, \label{eq:self_eff}$$

- Related to the size of the transverse space between partons inside the proton
- Approximately process and energy independent

DPS extraction

- Not easy to predict SPS distributions:
 - Depends on perturbative QCD corrections of various orders and on J/ψ production models
- A data-driven model-independent approach is exploited:
 - DPS template is simulated by combining re-sampled J/ ψ mesons from two different random events in the di-J/ ψ sample, normalized to DPS enriched data
 - SPS template is then obtained by subtracting the DPS template

Differential cross section results

Measured in the J/ ψ fiducial volume ($p_T > 8.5$ GeV, |y| < 2.1)

- With assumption of unpolarised J/ψ mesons
- Variations due to the maximal J/ψ spinalignment scenarios also shown (yellow band)
- DPS-weighted distributions are also shown

Two peaks structure in $d\sigma/dp_T (J/\psi J/\psi)$:

- ★ Low p_T : J/ψ are produced back-to-back
 → away topology
- ★ High p_T : two J/ψ are produced in the same direction → towards topology (only included in NLO calculation)

A relatively large inclusive DPS fraction: $f_{DPS} = 9.2 \pm 2.1$ (stat) ± 0.5 (syst) %

Differential cross section results (2)

Differential cross sections in muon fiducial volume :

- ◆ DPS predictions are normalized to measured
 *f*_{DPS} → shape comparison
- NLO SPS is scaled by 1.85 to account for *feed-down*
 - ★ Total data deviates from LO DPS + NLO* SPS prediction at large Δy, large invariant mass, and in the low-pT region → "away" topology

Differential cross section results (3)

 To study the properties of the discrepancies seen, a requirement of ∆y ≥ 1.8 is imposed

Lailin Xu

- SPS peaked at $\Delta \phi = \pi \rightarrow$ non-constant contribution from feed-down?
- Further studies needed, and would provide information to constrain quarkonia production models
 2.0 (a)

A.K. Likhoded et al, <u>Phys. Rev. D 94, 054017 (2016)</u>

Effective cross-section of DPS

• Effective cross section measurement:

$$\sigma_{\rm eff} \,=\, \frac{1}{2} \frac{\sigma_{J/\psi}^2}{\sigma_{\rm DPS}^{J/\psi,J/\psi}} \,=\, \frac{1}{2} \frac{\sigma_{J/\psi}^2}{f_{\rm DPS} \times \sigma_{J/\psi J/\psi}}, \label{eq:self_eff}$$

 $\sigma_{J/\psi}$ is obtained from ATLAS measurements [*Eur. Phys. J. C 76 (2016) 283*] $\sigma_{J/\psi} = 429.8 \pm 0.1$ (stat) ± 38.6 (syst) nb

Close to **D0** results from *quarkonium final stats*, lower than for other measurements

J/ ψ production is gluon dominated \rightarrow suggested smaller average transverse distances between gluons than between quarks in the proton ?

Latest measurements from LHCb @ 13 TeV arXiv:1612.07451

 $\sigma_{\rm eff}$ = 9.2±3.9 (stat) mb ~ 14.4 ± 4.9 (stat) mb

 σ_{eff} = 6.3 ± 1.6 (stat) ± 1.0 (syst) ± 0.1 (BF) ± 0.1 (lumi) mb. state, year) ATLAS (ATLAS ($\sqrt{s} = 8$ TeV, $J/\psi + J/\psi$, 2016) $DO(\sqrt{s} = 1.96 \text{ TeV}, J/\psi + J/\psi, 2014)$ DØ ($\sqrt{s} = 1.96$ TeV, J/ $\psi + \Upsilon$, 2016) LHCb ($\sqrt{s} = 7\&8$ TeV, $\Upsilon(1S) + D^{0,+}$, 2015) ₩₩₩ LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + \Lambda_c^+$, 2012) ┝╺╋╼╼╲╱╼╼╋┥ Experiment (energy, final LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + D_s^+$, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁺, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁰, 2012) ATLAS ($\sqrt{s} = 7$ TeV, 4 jets, 2016) CDF ($\sqrt{s} = 1.8$ TeV, 4 jets, 1993) UA2 ($\sqrt{s} = 630$ GeV, 4 jets, 1991) AFS ($\sqrt{s} = 63$ GeV, 4 jets, 1986) DØ ($\sqrt{s} = 1.96$ TeV, $2\gamma + 2$ jets, 2016) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2014) H☆H $D\emptyset \ (\sqrt{s} = 1.96 \text{ TeV}, \ \gamma + b/c + 2 \text{ jets}, 2014)$ DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2010) CDF ($\sqrt{s} = 1.8$ TeV, $\gamma + 3$ jets, 1997) ATLAS ($\sqrt{s} = 8$ TeV, $Z + J/\psi$, 2015) CMS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2014) ATLAS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2013) 25 30 0 15 20 $\sigma_{\rm eff}$ [mb]

Lailin Xu

Summary

- Prompt and non-prompt production of ψ(2S) and X(3872) states in the J/ψπ⁺π⁻ decay mode are studied with 8 TeV data:
 - Prompt production is described reasonably well by NRQCD with previously determined LDMEs, some deviation in the high p_{T} region
 - A significant fraction of non-prompt X(3872) produced in decays of B_c , measured to be $\frac{\sigma(pp \to B_c)\mathcal{B}(B_c \to X(3872))}{\sigma(pp \to \text{ non-prompt }X(3872))} = (25 \pm 13(\text{stat}) \pm 2(\text{sys}) \pm 5(\text{spin}))\%,$
- Prompt di- J/ψ production are studied with 8 TeV data:
 - Differential cross-section as a function of the sub-leading $J/\psi p_T$, di- $J/\psi p_T$, and di- J/ψ mass
 - NLO SPS + LO DPS describes data well, except some excess at large Δy and invariant mass
 - The effective cross section for DPS is measured to be:

 $\sigma_{\rm eff}$ = 6.3 ± 1.6 (stat) ± 1.0 (syst) ± 0.1 (BF) ± 0.1 (lumi) mb.

• More results with 13 TeV data are coming

Backup

ψ (2S)/X(3872): Event selection

- Trigger: Di-muon trigger with 4 GeV pT threshold on each muon
- Muon cuts:
 - $pT > 4 \text{ GeV}, |\eta| < 2.3$
 - Good trigger object matching ($\Delta R < 0.01$)
- J/ ψ cuts:
 - $\chi^2_{dimu_vtx}$ < 200, p_T > 8 GeV & |y| < 2.3
 - | m(J/ ψ) m(J/ ψ)PDG | < 120 MeV
- *π* cuts:
 - Opposite sign, pT > 600 MeV, $|\eta| < 2.4$
- $J/\psi \pi^+\pi^-$ background suppression cuts:
 - $P(\chi^2_{J/\psi\pi\pi}) > 4\%$
 - Opening angle $\Delta R(J/\psi, \pi \pm) < 0.5$
 - Q = m(J/ψπ+π-) m(J/ψ)_{PDG} m(π+π-) < 300 MeV

$\psi(2S)/X(3872)$: systematic uncertainties

• Min., Med. and Max. values for the contributions of various sources of systematic uncertainties across the p_{T} bins:

Differential cross sections

Non-prompt fractions

							Absolute uncertainty [%]									
	ų į	v(2S)[%)	X	(3872)[%]			$f^\psi_{ m NP}$			$f_{\rm NP}^X$			$f_{ m SL}^X$	
Source of uncertainty	Min	Med	Max	Min	Med	Max		Min	Med	Max	Min	Med	Max	Min	Med	Max
Statistical	0.9	1.4	5.4	7.3	9.9	63		0.4	0.5	1.4	4.2	5.8	17.8	16.4	25.8	63
Trigger eff.	1.0	1.3	2.5	1.1	1.3	2.6		0.1	0.1	0.3	0.1	0.1	0.4	0.0	0.1	0.1
Muon tracking	2.0	2.0	2.0	2.0	2.0	2.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Muon reconstruction eff.	0.2	0.2	0.3	0.2	0.2	0.4		0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.1
Pion reconstruction eff.	2.5	2.5	2.5	2.5	2.5	2.5		0.4	0.5	0.7	0.3	0.3	0.4	0.0	0.3	0.4
Bkgd suppression req.	0.8	0.8	3.0	2.0	3.0	6.0		0.8	1.1	1.4	0.6	0.7	0.7	0.1	0.1	0.7
Mass fit model variation	0.6	0.8	1.2	0.9	1.6	2.6		0.1	0.1	0.2	0.2	0.6	1.8	1.0	1.3	2.4
Short-lifetime variation	0.1	0.2	0.3	0.2	0.7	1.7		0.2	0.7	1.7	0.4	1.0	2.9	1.8	3.6	12.1
Long-lifetime variation	0.6	1.0	1.2	0.3	0.6	0.9		0.0	0.1	0.1	0.1	0.4	0.8	0.3	0.7	2.8
Lifetime resolution model	0.4	1.5	4.0	0.6	2.6	3.4		0.3	0.4	0.4	0.2	0.2	0.3	3.3	4.0	4.4
Total systematic	3.5	3.6	6.4	4.1	4.9	7.5		1.3	1.5	2.4	1.0	1.4	3.6	4.1	4.9	13.5
(2L-fit – 1L-fit) / 2L-fit (prompt)	-0.1	-0.4	-0.6	-0.3	-0.5	-3.4		+0.4	+0.6	+0.9	+0.9	+3.1	+9.1	-	-	-
(2L-fit – 1L-fit) / 2L-fit (non-prompt)	+0.1	+0.4	+0.7	+0.1	+1.4	+9.8										

Typically, for X(3872) errors are statistically dominated For $\psi(2S)$ statistical and systematic errors are similar in size

ψ (2S) differential cross sections:

Di-pion mass distribution

Measured invariant mass distributions of the di-pion system in the decays of $\psi(2S)$ and X(3872) into J/ $\psi\pi^+\pi^-$

In $\psi(2S)$ to J/ $\psi\pi$ + π - decays:

- Dipion mass distribution peaks at high masses
- Fit to Voloshin-Zakharov function

 $\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}m_{\pi\pi}}\propto\left(m_{\pi\pi}^2-\lambda m_{\pi}^2\right)^2\times\mathrm{PS},$

★ Found λ = 4.16 ± 0.06(stat) ± 0.03(syst) in agreement with previous measurements

In X(3872) to J/ $\psi\pi$ + π - decays

- Dipion mass distribution has an even sharper peak at high masses
- In agreement with simulation where the dipion system is produced via ρ_0 meson decay
- Also in agreement with previous observations

Di-J/ ψ : Event selection

- Trigger: Di-muon J/ψ trigger with 4 GeV pT threshold on each muon
- Muon cuts:
 - $pT > 2.5 \text{ GeV}, |\eta| < 2.3$
 - Muons from triggered J/ ψ must have pT > 4 GeV.
- J/ψ cuts:
 - − 2.8 ≤m_{µµ}≤3.4 GeV for each J/ ψ candidate
 - $p_{T} > 8.5 \text{ GeV and } |y_{J/\psi}| < 2.1$
 - Distance of the J/ ψ decay vertices in the *z*-plane: $|d_z| < 1.2$ mm.
 - L_{xy} error < 0.3 mm.

Background subtraction

- The PP di-J/ψ signal is extracted sequentially by removing the background
 - Non-J/ψ background:
 Perform a 2D fit of m(J/ψ1) against m(J/ψ2)
 Non-prompt background:

Extract PP signal from a fit of the transverse decay length L_{xy} of each J/ψ

Pile-up background:

Estimated from a fit to the d_z (distance of the J/ ψ decay vertices long the beam direction)

Total number of events observed: **1210** After background subtraction: **1160 ± 70**

Di-J/ ψ : Systematic uncertainties

• Sources of systematic uncertainty:

Systematic uncertainty: di- J/ψ cross-section [%]				
Source	$ y(J/\psi_2) < 1.05$	$1.05 \le y(J/\psi_2) < 2.1$		
Trigger	± 7.5	±8.3		
Muon reconstruction	± 1.1	± 1.3		
Kinematic acceptance	± 0.4	± 1.1		
Mass model	± 0.1	± 0.1		
Mass bias	± 0.2	± 0.2		
Prompt–prompt model	± 0.2	± 0.01		
Differential $f_{\rm PP}$ corr.	± 0.6	± 0.3		
Pile-up	± 0.03	± 0.4		
Total	\pm 7.7	\pm 8.5		
Branching fraction		±1.1		
Luminosity		±1.9		

Cross-section measurement

Trigger is the dominant source of the systematic uncertainty due to the trigger selection.

Systematic uncertainty: f_{DPS} [%]					
Source	Relative uncertainty $[\%]$				
Trigger	± 0.7				
Muon reconstruction	± 0.1				
Mass model	± 0.01				
Mass bias	± 0.02				
Prompt–prompt model	± 0.1				
Differential $f_{\rm PP}$ corr.	± 0.1				
Pile-up	± 0.8				
DPS model	± 5.6				
Total	± 5.7				

 f_{DPS} measurement

 Many of the systematic uncertainties cancel

σ_{eff}

28