
decay mode, or interference between two resonances. We
tried to fit the data for both of these possibilities.
In the first model, we assume the state around

1.85 GeV=c2 couples to the pp̄. The line shape of
η0πþπ− above the pp̄ threshold is therefore affected by
the opening of theXð1835Þ → pp̄ decay channel, similar to
the distortion of the f0ð980Þ → πþπ− line shape at the KK̄
threshold. To study this, the Flatté formula [25] is used for
the Xð1835Þ line shape:

T ¼
ffiffiffiffiffiffiffi
ρout

p

M2 − s − i
P

kg
2
kρk

: ð1Þ

Here, T is the decay amplitude, ρout is the phase space for
J=ψ → γη0πþπ−, M is a parameter with the dimension of
mass, s is the square of the η0πþπ− system’s mass, ρk is the
phase space for decay mode k, and g2k is the corresponding
coupling strength. The term
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decay width varies with s. Approximately,

X

k

g2kρk ≈ g20

"
ρ0 þ

g2pp̄
g20

ρpp̄

#
; ð2Þ

where g20 is the sum of g2 of all decay modes other than the
Xð1835Þ → pp̄, ρ0 is the maximum two-body decay phase
space volume [24], and g2pp̄=g20 is the ratio between the
coupling strength to the pp̄ channel and the sum of all other
channels.
The fit results for this model are shown in Fig. 3. The

Flatté model fit has a logL ¼ 630549.5 that is improved
over the simple Breit-Wigner one by 46, so the significance
of g2pp̄=g20 being nonzero is 9.6σ. In the fit, an additional
Breit-Wigner resonance [denoted as “Xð1920Þ” in Fig. 3] is
needed with a mass of 1918.6% 3.0 MeV=c2 and a width
of 50.6% 20.9 MeV=c2; the statistical significance of this
peak is 5.7σ. In the simple Breit-Wigner fit, the significance
of Xð1920Þ is negligible. The fit yields M ¼ 1638.0%
121.9 MeV=c2, g20 ¼ 93.7% 35.4ðGeV=c2Þ2, g2pp̄=g20 ¼
2.31% 0.37, and a product branching fraction of
BðJ=ψ → γXÞBðX → η0πþπ−Þ ¼ ð3.93 % 0.38Þ × 10−4.
The value of g2pp̄=g20 implies that the couplings between the
state around 1.85 GeV=c2 and the pp̄ final states is very
large. Following the definitions given in Ref. [26], the pole
position is determined by requiring the denominator in
Eq. (1) to be zero. The pole nearest to the pp̄ mass
threshold is found to be Mpole ¼ 1909.5% 15.9 MeV=c2

and Γpole ¼ 273.5% 21.4 MeV=c2. Taking the systematic
uncertainties (see below) into account, the significance of
g2pp̄=g20 being nonzero is larger than 7σ.
In the second model, we assume the existence of a

narrow resonance near the pp̄ threshold and that the
interference between this resonance and the Xð1835Þ
produces the line shape distortion. Here, we denote this
narrow resonance as “Xð1870Þ.” For this case we represent
the line shape in the vicinity of 1835 MeV=c2 by the square
of T, where

T ¼
" ffiffiffiffiffiffiffi

ρout
p

M2
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þ
βeiθ
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: ð3Þ

Here, ρout and s have the same meaning as they had in
Eq. (1);M1, Γ1,M2, and Γ2 represent the masses and widths
of theXð1835Þ andXð1870Þ resonances, respectively; and β
and θ are the relative η0πþπ− coupling strengths and the
phase between the two resonances.
The fit results for the secondmodel are shown inFig. 4. The

logL of this fit is 630 540.3, which is improved by 37 with
four additional parameters over that for the fit using one
simpleBreit-Wigner function. TheXð1835Þmass is 1825.3%
2.4 MeV=c2 and the width is 245.2% 13.1 MeV=c2; the
Xð1870Þ mass is 1870.2% 2.2 MeV=c2 and the width is
13.0% 6.1 MeV=c2, with a statistical significance that is
7.9σ. It is known that there are two nontrivial solutions in a
fit using a coherent sum of two Breit-Wigner functions [27].
In the parametrization of Eq. (3), the two solutions share the
sameM1,Γ1,M2, andΓ2, but have different values of β and θ,
which means that the only observable difference between the
solutions are branching fractions of the two Breit-Wigner
functions. The product branching fractions with construc-
tive interference are B½J=ψ → γXð1835Þ'B½Xð1835Þ →
η0πþπ−' ¼ ð3.01% 0.17Þ × 10−4 and B½J=ψ →
γXð1870Þ'B½Xð1870Þ → η0πþπ−' ¼ ð2.03% 0.12Þ × 10−7,
while the solution with destructive interference

)2] (GeV/c-π+π’ηM[
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

)2
E

ve
nt

s 
/ (

10
 M

eV
/c

0

500

1000

1500

2000

2500

Data
Global Fit

(1510)1f
X(1835)
X(1920)
X(2120)
Non-Resonant
Background

 thresholdpp

1.8 1.85 1.9 1.95

1000

1200

1400

1600

FIG. 3. Fit results of using the Flatté formula. The dashed
dotted vertical line shows the position of the pp̄ mass threshold,
the dots with error bars are data, the solid curves are total fit
results, the dashed curves are the state around 1.85 GeV=c2, the
short-dashed curves are the f1ð1510Þ, the dash-dotted curves are
the Xð2120Þ, the dash-dot-dot-dotted curves are the Xð1920Þ, and
the long-dashed curves are nonresonant η0πþπ− fit results; the
shaded histograms are background events. The inset shows the
data and the global fit between 1.8 and 1.95 GeV=c2.
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