

Assessorat de l'Éducation et de la Culture Assessorato Istruzione e Cultura

Perspectives of direct Detection of supersymmetric Dark Matter in the MSSM and NMSSM

D. Kazakov (JINR, Dubna)

in collaboration with

C. Beskidt, W. de Boer and S. Wayand (KIT, Karlsruhe)

based on : ArXive: 1703.01255

Les Rencontres de Physique, La Thuile, March, 2017

The MSSM and NMSSM

Parameters

Higgs mass

$$M_{H}^{2} \approx M_{Z}^{2} \cos^{2} 2\beta + \Delta_{\tilde{t}} + \lambda^{2} v^{2} \sin^{2} 2\beta - \frac{\lambda^{2}}{\kappa^{2}} (\lambda - \kappa \sin 2\beta)^{2}$$

$$\int_{\text{Tree level (MSSM)}} Rad Corr NMSSM new terms$$

Choice of parameters

Full set of parameters (9) $m_0, m_{1/2}, A_0, \tan \beta, \lambda, \kappa, A_\lambda, A_\kappa, \mu_{eff}$

Reduced set of parameters (3) m_{H_1} or $m_{H_2}, m_{A_1}, m_{A_2} \approx m_{H_3} \approx m_{H^{\pm}}$

To fulfill all constraints including:

- The light Higgs mass of 125 GeV with correct couplings,
- Dark Matter abundance,
- LHC limits, etc

One gets Two scenarios: I Large lambda and kappa and small tan beta II Small lambda and kappa and larger tan beta

- For both scenarios one can have either H_1=H_SM or H_2=H_SM
- In both scenarios the turning point for either a singlino or higgsino-dominated LSP is around $2\kappa/\lambda = 1$

Dark Matter Content

Neutralino mass matrix

LSP=Dark Matter

$$\begin{split} \tilde{\chi}_1^0 = N_{1,1} |\tilde{B}> + N_{1,2} |\tilde{W}^0> + N_{1,3} |\tilde{H}_1^0> + N_{1,4} |\tilde{H}_2^0> + N_{1,5} |\tilde{S}> \\ \text{gaugino} & \text{higgsino} & \text{singlino} \end{split}$$

LSP Content in NMSSM

Elastic WIMP-Nucleon Scattering

Spin-independent cross section

• Contributions from **squark-** and **Higgs-**exchanging diagrams:

Elastic WIMP-Nucleon Scattering

Detectability

Spin-dependent cross section

• Contributions from **squark-** and **Z**-exchanging diagrams:

SI versus SD X-sections

Negative interference of two Higgses for SI x-section $\sigma_{SI} \propto N_{13}^2 - N_{14}^2$

versus additive SD x-section

$$\sigma_{SD} \propto N_{13}^2 + N_{14}^2$$

Relic Density Abundance

Direct Detection of Dark Matter

10

Direct Detection of Dark Matter

11

Direct Detection of Dark Matter

12

Experiment Reach in the Nearest Future

Scenario I

Scenario II

Conclusion: in the framework of the NMSSM

- for Scenario I future experiments will cover all allowed range
- for Scenarion II future experiments will cover <u>almost</u> all allowed range except for small part of pure singlino LSP

Experiment Reach in the Nearest Future

Conclusion: in the framework of the MSSM the SI searches will cover all allowed region, the SD searches will not be essential

Conclusions

- In case of MSSM the future direct searches for DM will cover all allowed region of x-sections up to neutrino floor.
- In case of NMSSM and higgsino dominated LSP the future searches will also cover the whole range.
- In case of NMSSM and singlino dominated LSP the future searches for scenario I will cover the whole range and for scenarios II the small domain might remain which corresponds to almost >90% singlino DM.
- The SD dependent searches do not add significant information to SI searches in all cases.