Searches for third generation squarks, and for electroweak production of charginos and neutralinos in ATLAS

F. Legger

(Ludwig-Maximilians University, Munich)

on behalf of the ATLAS collaboration

Les XXXI Rencontres de Physique de la Vallée d'Aoste – 5-11 March 2017

SUSY searches in ATLAS

- First- and second-generation squarks and gluinos have highest production cross-sections → covered by previous talk
- Naturalness arguments favour light partners of the third generation quarks (and higgsinos): stop, stop, sbottom
- If strong production is suppressed, EWK processes may be the key to finding SUSY at the LHC
 - SM backgrounds suppressed compared to strong production searches

- R-parity conservation (RPC):
 - LSP stable → dark matter candidate
 - Large Missing Transverse Energy (MET)
- R-parity violation (RPV)
 - LSP not necessaily neutral and stable

Search for production of stops, charginos, neutralinos in both R-parity conserving and violating models Third generation

Stop OL: analysis strategy

+ highly boosted stop, + in association with DM production

• Background estimation:

- Z(→nunu)+b-jets, ttbar(+W/Z), W+b-jets: semi-data driven, simultaneous fit of MC normalization to data in dedicated control regions
- Multi-jet: from data with jet smearing method

ATLAS-CONF-2016-077

Stop OL: results

F. Legger, La Thuile 2017

Stop 1L: results

F. Legger, La Thuile 2017

Stop 2L: results

Targets same models as 0-1L, but requires 2 leptons from W

ATLAS-CONF-2016-076

Super-razor variables used to identify a system of two massive particles (the stops) decaying into a set of visible (leptons) and invisible (neutrino and neutralinos)

Centre-of-mass energy in razor frame (parent particles)
Lorentz boost from razor frame to decay products frame

 $M^R_{\Lambda} = \frac{\sqrt{\hat{s}_R}}{-}$

Stop production: summary plot

Stop 2x2 RPV: analysis strategy

+ exotics models (colorons) ATLAS-CONF-2016-084

 SR with at least 4 jets, paired according to min ΔR. After pairing:

 $\Delta R_{\rm min} < 0.003 \cdot m_{\rm avg}/{\rm GeV}$

where

$$m_{\text{avg}} = \frac{1}{2}(m_1 + m_2)$$
 $\Delta R_{\min} = \sum_{i=1,2} |\Delta R_i - 1.0|$

The mass asymmetry between the two candidate resonances

$$A = \frac{m_1 - m_2}{m_1 + m_2} < 0.05$$

The stop production angle in its com frame with respect to the beam line

 $\cos \theta^* < 0.5$

- Background estimation:
 - Multi-jets: data driven ABCD method based on mass asymmetry and stop production angle

Stop 2x2 RPV: results

Local p0 value calculated in intervals of 10 GeV

10/3/2017

Electro-weak

2-3L(e,µ)+MET: analysis strategy

 $ilde{\chi}_1^{\pm}$, $ilde{\chi}_2^0$ 100% wino $\tilde{\chi}_1^0$ 100% bino

SRs requiring 2 OS leptons, no jets, and with (binned) MT2

 $m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right],$

- Background estimation 2L:
 - WW, WZ: semi-data driven, simultaneous fit of MC normalization to data in dedicated control regions
 - top: from MC, validated in dedicated VR

- SRs requiring 3 leptons, with 1 OS pair, no b-jets, and with (binned) MET and **3rd lepton pt cuts**
- Background estimation 3L:
 - Irreducible backgrounds (WZ, ZZ, VVV, ttbar+V, tZ, Higgs): from MC simulation, validated in regions kinematically close to SRs
- Non-prompt leptons: from semi-data driven with Matrix Method (based on lepton reconstruction efficiencies and mis-identification rates)

A

$2-3L(e,\mu)+MET - Results$

 $m_{\widetilde{\chi}^{\pm}_{*}}\left[GeV\right]$

$\geq 2\tau + MET$: analysis strategy

SRs requiring 2 OS taus, no b-jets, and with large MT2 and MET cuts

• Background estimation:

- W+jets: semi-data driven, simultaneous fit of MC normalization to data in dedicated control region in tau+mu channel
- ttbar, Z+jets, diboson, Higgs: from MC and validated in dedicated VRs (top and Z in tau-tau channel, WW in e-mu channel)
- Multi-jet: data driven with ABCD Method (extrapolating in MET and MT2 from SS region)

$\geq 2\tau + MET$: - Results

EWK production: summary plot

10/3/2017

≥ 4L RPV: analysis & results

ATLAS-CONF-2016-075

SRs requiring at least 4 leptons (e,mu), Z veto (based on MII), and large Meff

$$m_{\text{eff}} = \sum_{\ell=e,\mu} p_{\text{T}}(\ell) + \sum_{\tau} p_{\text{T}}(\tau) + \sum_{p_{\text{T}}(j) > 40 \text{ GeV}} p_{\text{T}}(j) + E_{\text{T}}^{\text{miss}}$$

- Background estimation:
 - Irreducible backgrounds (ZZ, VVV, ttbar+Z, Higgs): from MC simulation, validated in regions close to SRs
 - Non-prompt leptons: semi-data driven with Fake Factor method (based on mis-identification rates)

• \tilde{B} -like $\tilde{\chi}_1^0$ decays via possible RPV interactions

• Equal BR between the 3 decay modes: $\begin{cases} ee & e\mu & \mu\mu & \lambda_{12k} \\ e\tau & \mu\tau & \tau\tau & \lambda_{i33} \end{cases}$

Conclusion

Searches for third generation squarks and electroweak production of SUSY particles in both RPC and RPV models with ATLAS data:

- Many analyses covering several production modes and final states
- <u>No deviation</u> of observed event yields from SM predictions → limits set on several models
- Updated results coming soon with full 2016 dataset

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m(\tilde{\chi}_{1}^{0}) < 150 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) m(\tilde{\chi}_{1}^{0}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) m(\tilde{\chi}_{1}^{0}) = 1 \text{ GeV}$
$\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{1}$ $0.2 e, \mu$ $1.2 b$ Yes $4.7/13.3$ \tilde{t}_{1} 200-720 GeV $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0}$ or $t\tilde{\chi}_{1}^{0}$ $0.2 e, \mu$ $0.2 jets/1-2 b$ Yes $4.7/13.3$ \tilde{t}_{1} 90-198 GeV 200-720 GeV	$m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0})$ $m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$
\tilde{t}_{1} \tilde{t}_{1} $\tilde{t}_{1} \rightarrow Wb\tilde{\chi}^{0}_{1}$ or $t\tilde{\chi}^{0}_{1}$ 0-2 e, μ 0-2 jets/1-2 b Yes 4.7/13.3 \tilde{t}_{1} 90-198 GeV	$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$
$\vec{c} = \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 \to c \tilde{x}_1^0$ 0 mono-jet Yes 3.2 \tilde{t}_1 90-323 GeV	$m(\tilde{t}_1) - m(\tilde{\chi}'_1) = 5 \text{ GeV}$
\tilde{t}_{1} \tilde{t}_{1} \tilde{t}_{1} (natural GMSB) 2 e, μ (Z) 1 b Yes 20.3 \tilde{t}_{1} 150-600 GeV	$m(\tilde{\chi}_1^0) > 150 \text{GeV}$
\tilde{t}_2 $\tilde{t}_2, \tilde{t}_2 \to \tilde{t}_1 + Z$ 3 $e, \mu(Z)$ 1 b Yes 13.3 \tilde{t}_2 290-700 GeV	$m(\tilde{\chi}_{1}^{0}) < 300 \text{GeV}$
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ 1 e, μ 6 jets + 2 b Yes 20.3 \tilde{t}_2 320-620 GeV	$m(\tilde{\chi}_1^0)=0$ GeV
$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \to \ell \tilde{\chi}_1^0$ 2 e, μ 0 Yes 20.3 $\tilde{\ell}$ 90-335 GeV	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$
$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+}\to\tilde{\ell}\nu(\ell\tilde{\nu})$ 2 e,μ 0 Yes 13.3 $\tilde{\chi}_{1}^{\pm}$ 640 GeV m($\tilde{\chi}_{1}^{0}$)=0) GeV, m($\tilde{\ell}, \tilde{\nu}$)=0.5(m($\tilde{\chi}_1^{\pm}$
$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu})$ 2 τ - Yes 14.8 $\tilde{\chi}_{1}^{\pm}$ 580 GeV	$m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=$
$\sim \overleftarrow{v}_{11} \widetilde{\chi}_{2}^{1} \rightarrow \widetilde{\ell}_{L} \nu \widetilde{\ell}_{L} \ell(\widetilde{\nu} \nu), \ell \widetilde{\nu} \widetilde{\ell}_{L} \ell(\widetilde{\nu} \nu) = 3 e, \mu = 0$ Yes 13.3 $\widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{2}^{0}$ 1.0 TeV m($\widetilde{\chi}_{1}^{\pm}$)=r	$\mathfrak{n}(\tilde{\chi}_{2}^{0}), \mathfrak{m}(\tilde{\chi}_{1}^{0})=0, \mathfrak{m}(\tilde{\ell}, \tilde{\nu})=$
$\sum_{\mu=1}^{\infty} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} $ 2-3 e, μ 0-2 jets Yes 20.3 $\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}$ 425 GeV	$m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=$
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma e, \mu, \gamma 0-2 \ b \text{Yes} 20.3 \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0} 270 \ \text{GeV}$	$m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=$
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \to \tilde{\ell}_{R}\ell$ 4 e, μ 0 Yes 20.3 $\tilde{\chi}_{2,3}^{0}$ 635 GeV $m(\tilde{\chi}_{2}^{0})=n$	$n(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=$

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Spare slides

More stop searches

ATLAS SUSY searches in a nutshell

- SUSY signal:
 - most searches use simplified model (bottom-up) approach:
 - Consider a single production process, typically producing one given <u>pair of sparticles</u>
 - Fix sparticle decays, typically assuming 100% BR
 - Sparticle masses are usually free and independent parameters to scan over
- SM backgrounds:
 - (Semi) data-driven estimations
 - MC simulation for minor backgrounds
- Statistical interpretation of results:
 - Consistency between observed data and expected background events quantified as a *p*-value
 - Model-dependent limits are set on signal strength/production cross-section

100 200 300 400 500 600

10/3/2017

F. Legger, La Thuile 2017

21

700 800 900 1000

m($\widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{3}^{0}$) [GeV]

Summary

								-						
nen	ed.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_1^0$		0	3 <i>b</i>	Yes	14.8	ĝ					1.89 TeV	$m(\tilde{\chi}_1^0)=0 GeV$
0 p.	D E	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$		0-1 e,μ	3 b 3 h	Yes	14.8	ĝ č					1.89 TeV	$m(\tilde{\chi}_1^0)=0 \text{ GeV}$
ĥ	, 100	$gg, g \rightarrow bt\chi_1$		0-1 <i>e</i> ,μ	30	res	20.1	g					.37 Tev	m(X ₁)<300 GeV
y.	2 0	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$		0	2 <i>b</i>	Yes	3.2	${ ilde b_1}{ ilde { ilde v}}$			84	0 GeV		$m(\tilde{\chi}_1^0) < 100 \text{GeV}$
ark	tio	$b_1b_1, b_1 \rightarrow t \tilde{\chi}_1^{\pm}$		2 e, μ (SS)	1 <i>b</i>	Yes	13.2	\tilde{b}_1			325-685 GeV			$m(\tilde{\chi}_{1}^{0}) < 150 \text{ GeV}, m(\tilde{\chi}_{1}^{2})$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \chi_1^{+}$) ~0	$0-2 e, \mu$	1-2 <i>b</i>	Yes	4.7/13.3	417-170	GeV		200-720 Ge	V		$m(\tilde{\chi}_1^{\pm}) = 2m(\tilde{\chi}_1^{\circ}), m(\tilde{\chi}_1^{\circ})$
S.	2 OL	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb\chi$	i or $t \chi_1^{\circ}$	0-2 <i>e</i> ,μ	0-2 jets/1-2 l	? Yes	4.//13.3	t_1 90	-198 GeV	000 0-1/	205-85	0 GeV		$m(\chi_1^\circ) = 1 \text{ GeV}$
uer Ler	St D	$t_1 t_1, t_1 \rightarrow c \chi_1$	MSB)	$\frac{1}{2} a \mu(7)$		Yes	3.2 20.2	$\frac{l_1}{\tilde{r}}$	90	-323 Gev	150 600 CoV			$m(t_1)-m(\chi_1)=5 \text{ GeV}$ $m(\tilde{x}^0) > 150 \text{ GeV}$
rd C	irec	$\tilde{t}_1 \tilde{t}_1$ (natural G	7	$2e, \mu(Z)$ $3e \mu(Z)$	1 D	Voe	20.3	\tilde{t}_1			200-700 GeV	/		$m(x_1) > 150 \text{ GeV}$ $m(\tilde{y}_1^0) < 300 \text{ GeV}$
ñ	d d	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + 2$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + k$	2	1 e. u	6 iets + 2 b	Vec	20.3	\tilde{t}_2			320-620 GeV			$m(\tilde{\chi}_1) < 300 \text{ GeV}$ $m(\tilde{\chi}_1^0) = 0 \text{ GeV}$
-	_	~ ~ ~ ~	~0	, μ	0 1010 1 2 0	103	20.0	•2			520-020 GCV			
		$\ell_{L,R}\ell_{L,R}, \ell \rightarrow \ell$		2 e, µ	0	Yes	20.3	Ĩ č±	9	0-335 GeV			~0.	$m(\tilde{\chi}_1^0)=0$ C
		$\chi_1\chi_1, \chi_1 \to \ell \nu$ $\tilde{z}^+ \tilde{z}^-, \tilde{z}^+, \tilde{z}^-$	$(\ell \tilde{\nu})$	2 e, µ	0	Yes	13.3	χ_1^-			640 GeV		$m(\mathcal{X}_1) = 0$	0 GeV, m(ℓ, i
	t	$\chi_1\chi_1, \chi_1 \rightarrow \bar{\tau}\nu$ $\tilde{\tau} = \tilde{\tau}^0$ $\tilde{\tau}$ $\tilde{\tau}$	$(\tau \bar{\nu})$	27	-	Yes	14.8	$\begin{array}{c} \chi_1 \\ z^{\pm} z^0 \end{array}$			580 Gev	10 ToV	(ĩ±)	$m(\chi_1) = 0 C$
\geq	ec	$\chi_1 \chi_2 \rightarrow \ell_L \nu \ell_L \ell$ $\tilde{\nu}^{\pm} \tilde{\nu}^0 \qquad W \tilde{\nu}^0 Z^0$	$(\nu\nu), \ell\nu\ell_{\rm L}\ell(\nu\nu)$	3 e,μ 2-3 e μ	U 0-2 iote	Yes	13.3	χ_1, χ_2 $\tilde{\chi}^{\pm}, \tilde{\chi}^0$		405	CoV	1.0 lev	$m(\chi_1) =$	$m(\chi_2), m(\chi_1)$
ц	」 に	$\tilde{\chi}_1 \chi_2 \rightarrow W \chi_1 Z \chi$ $\tilde{\chi}^{\pm} \tilde{\chi}^0 \rightarrow W \tilde{\chi}^0 h$	\tilde{v}^0 h h h / W W/ $\pi\pi/m$	2-5 ε,μ	0-2 jets 0-2 h	Voc	20.3	\tilde{v}_1, \tilde{v}_2 $\tilde{v}^{\pm}, \tilde{v}^0$	270	GoV	Gev			$m(\chi_1) = m(\chi_1)$
		$\tilde{\chi}_{0}^{0}\tilde{\chi}_{0}^{0}$ $\tilde{\chi}_{0}^{0}$ $\tilde{\chi}_{0}^{0}$ $\rightarrow \tilde{\ell}$	$\kappa_1, n \rightarrow bb/w w/tt/\gamma_j$	4 e. u	0-20	Yes	20.3	$\tilde{\chi}_{1}^{0}, \chi_{2}^{0}$	210	aev.	635 GeV		$m(\tilde{\chi}_{2}^{0}) - i$	$m(\tilde{\chi}_{2}^{0}) = m(\tilde{\chi}_{1}^{0})$
		$n_2 n_3, n_{2,3} = n$	K'	, μ	v	100	20.0	7 2.3					114(2)-1	ny, 3), my, 1
		i	É 2	0	No. 140	*	-			.~0				
			$\tilde{g}\tilde{g}, \tilde{g} \rightarrow bb\chi_1$	0-1 <i>e u</i>	3 D YeS 14.8	g ã			1.89 IeV	$m(\chi_1^0)=0$ GeV			-CONF-2016-052	
			$\tilde{g}_{g}, g \rightarrow i \chi_{1}$	0-1 e. µ	3 b Yes 20.1	ē ģ			1.09 TeV	$m(\tilde{\chi}_1)=0$ GeV $m(\tilde{\chi}_1^0) < 300$ GeV		AILAS	-00NF-2016-052 1407 0600	
			r r r	^		7				m(r), 000 00 v				
			$ \sum_{i=1}^{b_1} b_1 b_1, b_1 \rightarrow b \chi_1^{-1} b_1 \lambda_1 $	2 0 11 (99)	2 b Yes 3.2	b ₁		840 GeV		$m(\chi_1^0) < 100 \text{ GeV}$	±)	1 ATLAC	606.08772	
			\overline{b} \overline{b}	0-2 e u 1	2 h Voc 4 7/13 3	01 ñ17.1	10			$m(\chi_1) < 150 \text{ GeV}, m(\chi_1) < 150 \text{ GeV}, m(\chi_2) = 2m(\tilde{\chi}^0), m(\chi_2)$	$m_1 = m(\chi_1) + 100 \text{ GeV}$	1200 2102 A	-00NF-2016-037	
			$\tilde{t}_{i}\tilde{t}_{i}, \tilde{t}_{i} \rightarrow Wb\tilde{\chi}_{i}^{0} \text{ or } t\tilde{\chi}_{i}^{0}$	0-2 <i>e</i> ,µ 0-2 je	ts/1-2 b Yes 4.7/13.3	Ĩ1	20	05-850 GeV		$m(\tilde{\chi}_1^0) = 2m(\chi_1), m(\chi_1^0)$ $m(\tilde{\chi}_1^0) = 1 \text{ GeV}$	1)=55 Gev	1506.08616.	ATLAS-CONF-2016-077	
			$\vec{z} = \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{c} \tilde{\chi}_1^0$	0 mo	no-jet Yes 3.2	Ĩ1	-			$m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=5 \text{ GeV}$		1	604.07773	
			$\tilde{t}_1 \tilde{t}_1$ (natural GMSB)	2 e, µ (Z)	1 b Yes 20.3	\tilde{t}_1	e	V		$m(\tilde{\chi}_1^0)$ >150 GeV			1403.5222	
			$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ (Z)	1 b Yes 13.3	\tilde{t}_2	D	0 GeV		$m(\tilde{\chi}_1^0) < 300 \text{GeV}$		ATLAS	-CONF-2016-038	
			$t_2t_2, t_2 \rightarrow t_1 + h$	1 e, µ 6 jet	s+2 <i>b</i> Yes 20.3	<i>t</i> ₂	à	eV		$m(\tilde{\chi}_1^0)=0 \text{ GeV}$		1	506.08616	
			$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, µ	0 Yes 20.3	ĩ				$m(\tilde{\chi}_1^0)=0 \text{ GeV}$			1403.5294	
			$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$	2 e, µ	0 Yes 13.3	$\hat{\chi}_{1}^{\pm}$	640 G	BeV	$m(\tilde{\chi}_1^0)=0$	GeV, m($\tilde{\ell}, \tilde{\nu}$)=0.5(m($\tilde{\chi}$	$(\tilde{\chi}_1^0)+m(\tilde{\chi}_1^0))$	ATLAS	-CONF-2016-096	
			$\chi_1^{-1}\chi_1^{-1}, \chi_1^{-1} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$	2τ	- Yes 14.8	χ_1^* $z^{\pm} z^0$	580 GeV		~+	$m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})$	$=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	ATLAS	-CONF-2016-093	
			$\sum_{v \in V} \begin{array}{c} \chi_1^* \chi_2^* \rightarrow \ell_L v \ell_L \ell(\tilde{v}v), \ell \tilde{v} \ell_L \ell(\tilde{v}v) \\ \tilde{v}^{\pm} \tilde{v}^0, w \tilde{v}^0 \sigma \tilde{v}^0 \end{array}$	3 e, µ	U Yes 13.3 Diete Voc 20.2	χ_1, χ_2 $\tilde{v}^{\pm}, \tilde{v}^0$	Dell	1.0 TeV	$m(\tilde{\chi}_1^2)=n$	$\mathfrak{n}(\mathcal{X}_{2}), \mathfrak{m}(\mathcal{X}_{1})=0, \mathfrak{m}(\tilde{\ell}, \tilde{\nu})$	$=0.5(m(\mathcal{X}_{1})+m(\mathcal{X}_{1}))$	ATLAS	-CONF-2016-096	
_			$\begin{array}{c} \underline{W} \stackrel{\scriptstyle I}{\overset{\scriptstyle I}{\overset{\scriptstyle I}}} & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1^0 \mathcal{L} \chi_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1^0 \mathcal{L} \chi_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_1 \chi_1 \chi_1 \chi_2 \rightarrow W \chi_1 \mathcal{L} \chi_1 \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_1 \chi_1 \chi_1 \chi_1 \chi_1 \chi_1 \chi_1 \end{pmatrix}_1 \\ & \chi_1 \chi_1 \chi_1 \chi_1 \chi_1 \chi_1 \chi_1 \chi_1 \chi_1 \chi_1$	2-5 e, µ 0-2	- jour tes 20.3	$\tilde{\chi}_1, \tilde{\chi}_2$ $\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{0}$	Jev			$m(\chi_1) = m(\chi_2), m(\chi_1) = m(\tilde{\chi}_1) = m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_1^{0}), m(\tilde{\chi}_1^{0})$	=0, <i>t</i> decoupled	1403.5	5294, 1402.7029	
0/3	3/20)17	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{23}^{0} \rightarrow \tilde{\ell}_{R}\ell$	4 <i>e</i> ,μ	0 Yes 20.3	$\tilde{\chi}_{23}$	635 G	ieV	$m(\tilde{\chi}_2^0) = m$	$(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})$	$=0.5(m(\tilde{\chi}_{2}^{0})+m(\tilde{\chi}_{1}^{0}))$		1405.5086	2
											· · · · · · · · · · · · · · · · · · ·			

Signal regions: \geq 4L, 2-3L(e, μ), \geq 2 τ

Sample	$N(e,\mu)$ signal	$N(e,\mu)$ loose	Z boson	$m_{\rm eff}$ [GeV]
SRA	>= 4	>= 0	veto	> 600
CR-SRA	= 2	>= 2	veto	> 600
SRB	>= 4	>= 0	veto	> 900
CR-SRB	= 2	>= 2	veto	> 900
VR	>= 4	>= 0	veto	< 600
CR-VR	= 2	>= 2	veto	< 600

Variable	SR2ℓ			
lepton	$\ell^+\ell^-$			
lepton flavour	SF	DF		
central light jets	020	030		
central <i>b</i> -jets	020	020		
forward jets	030	030		
$ m_{\ell\ell} - m_Z $ [GeV]	> 10	_		
$m_{\mathrm{T2}} [\mathrm{GeV}]$	> 90,	120, 150		

SR-C1C1	SR-C1N2						
light lepton veto	-						
at least two medium taus							
at least one opposite sign tau pair							
<i>b</i> -jet veto							
Z-veto							
$E_{\rm T}^{\rm miss} > 150 {\rm GeV}$							
$m_{ m T2}$ > 70 GeV							

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$
$$m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}, \mathbf{q}_{\mathrm{T}}) = \sqrt{2(p_{\mathrm{T}}q_{\mathrm{T}} - \mathbf{p}_{\mathrm{T}} \cdot \mathbf{q}_{\mathrm{T}})}.$$

Variable	$SR3\ell$ -I	$SR3\ell$ -H
lepton	$\ell^+\ell^-\ell$	
<i>b</i> -tagged jet	veto	
$m_{\rm T} >$	110	
$m_{ m SFOS}$	$\notin [81.2, 101.2]$	>101.2
$p_{\mathrm{T}}^{3^{rd}\ell} >$	30	80
$E_{\mathrm{T}}^{\mathrm{miss}} >$	120	60

Signal regions: stop 0L

$Stop \to top NL$									
Signal Region		\mathbf{TT}	$\mathbf{T}\mathbf{W}$	TO					
	$m_{\text{jet},R=1.2}^0$	> 120 GeV	$> 120 { m ~GeV}$	> 120 GeV					
	$m^1_{\text{jet},R=1.2}$	$> 120 { m ~GeV}$	$60-120~{\rm GeV}$	$< 60 { m GeV}$					
	$m_{\text{jet},R=0.8}^0$		$> 60 { m ~GeV}$						
	<i>b</i> -tagged jets		≥ 2						
\mathbf{SRA}	$m_{ m T}^{b,{ m min}}$								
	τ -veto	yes							
	$E_{\rm T}^{\rm miss}$	> 400 GeV	$> 450 { m ~GeV}$	> 500 GeV					
	<i>b</i> -tagged jets		≥ 2						
	$m_{\mathrm{T}}^{b,\mathrm{min}}$	> 200 GeV							
	$m_{\mathrm{T}}^{b,\mathrm{max}}$								
\mathbf{SRB}	τ -veto	yes							
	$\Delta R\left(b,b\right)$		> 1.2						
	$E_{\mathrm{T}}^{\mathrm{miss}}$								

N I 4 \sim

Stop \rightarrow b C1 \rightarrow b W N1

Variable	SRC-low	SRC-med	SRC-high
m_{bjj}		> 250 GeV	
<i>b</i> -tagged jets		≥ 2	
$p_{ m T}^0$	> 150 GeV	> 200 GeV	> 250 GeV
p_{T}^{1}	> 100 GeV	> 150 GeV	> 150 GeV
$m_{ m T}^{b,{ m min}}$	> 250 GeV	> 300 GeV	> 350 GeV
$m_{\mathrm{T}}^{b,\mathrm{max}}$	> 350 GeV	> 450 GeV	> 500 GeV
$\Delta R(b,b)$		> 0.8	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	$[5,12]\sqrt{GeV}$	$[5, 12]\sqrt{GeV}$	$[5, 17]\sqrt{GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$		> 250 GeV	

Stop +DM production

Variable	SRE	SRF		
<i>b</i> -tagged jets	≥ 2			
$m_{\mathrm{jet},R=1.2}^0$	> 140 GeV	-		
$m^1_{\text{jet},R=1.2}$	$> 60 { m GeV}$	-		
$m^0_{\mathrm{jet},R=0.8}$	-	> 120 GeV		
$m^1_{\text{jet},R=0.8}$	-	$> 60 { m GeV}$		
$m_{\mathrm{T}}^{b,\mathrm{min}}$	> 200 GeV	$> 175 { m GeV}$		
τ -veto	yes	no		
$\Delta R(b,b)$	> 1.5	-		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 300 GeV	> 250 GeV		
H_{T}	-	> 1100 GeV		
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	$> 14\sqrt{GeV}$	$> 15\sqrt{GeV}$		

Highly boosted stops

Stop → b W N1

Variable	SRD1	SRD2	SRD3	SRD4	SRD5	SRD6	SRD7	SRD8
min $R_{\rm ISR}$	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60
$\max R_{\rm ISR}$	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75
b-tagged jets	≥ 2					2	1	
$N_{ m jet}^{ m S}$	≥ 5							
$p_{\mathrm{T}}^{\mathrm{ISR}}$	> 400 GeV							
$p_{\mathrm{T}}^{b ext{-}\mathrm{tag},S}$	> 40 GeV							
$p_{\mathrm{T}}^{\mathrm{jet}4,S}$	> 50 GeV							
M_{T}^{S}	$> 300 \mathrm{GeV}$							
$\Delta \phi_{\rm ISR}$	> 3.0 radians							

Signal regions: stop 1L

Γ			Common event selection						
	Trigger		$E_{\rm T}^{\rm miss}$ trigger						
	Lepton		exactly one signal lepton (e, μ) , no addition	onal baseline leptor	ıs				
	Jets		at least two signal jets, and $ \Delta \phi(\text{jet}_i, \vec{p}_T^{\text{miss}}) > 0.4$ for $i \in \{1, 2\}$						
	Hadronic τ veto [*]		veto events with a hadronic τ decay and \imath						
· ~ /		1							
Variable	bC2x_diag	bC2x_med	bCbv						
Number of (jets, b -tags)	$(\geq 4, \geq 2)$	$(\geq 4, \geq 2)$	$(\geq 2, = 0)$						
Jet $p_{\rm T} > [{\rm GeV}]$	(70 60 55 25)	$(170 \ 110 \ 25 \ 25$	$(120\ 80)$						
b -tagged jet $p_{\rm T} > [{\rm GeV}]$	$(25 \ 25)$	(105 100)	_						
$E_{\rm T}^{\rm miss}$ [GeV]	> 230	> 210	> 360						
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 7	> 16						
m_{T} [GeV]	> 170	> 140	> 200						
am_{T2} [GeV]	> 170	> 210	_						
$ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{miss}}) (i=1)$	> 1.2	> 1.0	> 2.0						
$ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{miss}}) (i=2)$	> 0.8	> 0.8	> 0.8						
Leading large-R jet mass $[GeV]$	_	_	[70, 100]						
$\Delta \phi(ar{p}_{ m T}^{ m miss},\ell)$	-	—	> 1.2						
Variable	DM_low	DM_high							
Number of (jets, b -tags)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$	Variable	SR1	tN_high				
Jet $p_{\rm T} > [{\rm GeV}]$	$(60 \ 60 \ 40 \ 25)$	$(50 \ 50 \ 50 \ 25)$	Number of (jets, <i>b</i> -tags)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$				
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 330	Jet $p_{\rm T} > [{\rm GeV}]$	$(80 \ 50 \ 40 \ 40)$	$(120 \ 80 \ 50 \ 25)$				
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 9.5	$E_{\rm T}^{\rm miss}$ [GeV]	> 260	> 450				
$m_{\rm T}$ [GeV]	> 120	> 220	$E_{T,\perp}^{\text{miss}}$ [GeV]	_	> 180				
am_{T2} [GeV]	> 140	> 170	$H_{\mathrm{T,sig}}^{\mathrm{miss}}$	> 14	> 22				
$\min(\Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i)) \ (i \in \{1-4\})$	> 1.4	> 0.8	m_{T} [GeV]	> 170	> 210				
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	> 0.8	_	am_{T2} [GeV]	> 175	> 175				
			topness	> 6.5	—				
			$m_{\rm top}^{\chi}$ [GeV]	< 270	_				
			$\Delta \hat{R(b,\ell)}$	< 3.0	< 2.4				
			Leading large-R jet $p_{\rm T}$ [GeV]	_	> 290				
			Leading large-R jet mass [GeV]	-	> 70				
			$\Delta \phi(\vec{p}_{T}^{\text{miss}}, 2^{\text{nd}} \text{large-R jet})$	-	> 0.6				

Excess: stop 1L

10/3/2017

 E_T^{miss} [GeV]

Signal region	SR1	tN_high	bC2x_diag	$bC2x_med$	bCbv	DM_low	DM_high
Observed	37	5	37	14	7	35	21
Total background	24 ± 3	3.8 ± 0.8	22 ± 3	13 ± 2	7.4 ± 1.8	17 ± 2	15 ± 2
$t\bar{t}$	8.4 ± 1.9	0.60 ± 0.27	6.5 ± 1.5	4.3 ± 1.0	0.26 ± 0.18	4.2 ± 1.3	3.3 ± 0.8
W+jets	2.5 ± 1.1	0.15 ± 0.38	1.2 ± 0.5	0.63 ± 0.29	5.4 ± 1.8	3.1 ± 1.5	3.4 ± 1.4
Single top	3.1 ± 1.5	0.57 ± 0.44	5.3 ± 1.8	5.1 ± 1.6	0.24 ± 0.23	1.9 ± 0.9	1.3 ± 0.8
$t\bar{t} + V$	7.9 ± 1.6	1.6 ± 0.4	8.3 ± 1.7	2.7 ± 0.7	0.12 ± 0.03	6.4 ± 1.4	5.5 ± 1.1
Diboson	1.2 ± 0.4	0.61 ± 0.26	0.45 ± 0.17	0.42 ± 0.20	1.1 ± 0.4	1.5 ± 0.6	1.4 ± 0.5
Z+jets	0.59 ± 0.54	0.03 ± 0.03	0.32 ± 0.29	0.08 ± 0.08	0.22 ± 0.20	0.16 ± 0.14	0.47 ± 0.44
$tar{t}$ NF	1.03 ± 0.07	1.06 ± 0.15	0.89 ± 0.10	0.95 ± 0.12	0.73 ± 0.22	0.90 ± 0.17	1.01 ± 0.13
W+jets NF	0.76 ± 0.08	0.78 ± 0.08	0.87 ± 0.07	0.85 ± 0.06	0.97 ± 0.12	0.94 ± 0.13	0.91 ± 0.07
Single top NF	1.07 ± 0.30	1.30 ± 0.45	1.26 ± 0.31	0.97 ± 0.28	_	1.36 ± 0.36	1.02 ± 0.32
$t\bar{t} + W/Z$ NF	1.43 ± 0.21	1.39 ± 0.22	1.40 ± 0.21	1.30 ± 0.23	_	1.47 ± 0.22	1.42 ± 0.21
$p_0 (\sigma)$	0.012 (2.2)	0.26(0.6)	0.004(2.6)	0.40~(0.3)	0.50(0)	0.0004 (3.3)	0.09(1.3)
$N_{\rm non-SM}^{\rm limit}$ exp. (95% CL)	$12.9^{+5.5}_{-3.8}$	$5.5^{+2.8}_{-1.1}$	$12.4^{+5.4}_{-3.7}$	$9.0^{+4.2}_{-2.7}$	$7.3^{+3.5}_{-2.2}$	$11.5^{+5.0}_{-3.4}$	$9.9^{+4.6}_{-2.9}$
$N_{\rm non-SM}^{\rm limit}$ obs. (95% CL)	26.0	7.2	27.5	9.9	7.2	28.3	15.6

26

Excess: stop 1L, interpretations

