Some recent progress on lattice QCD for Kaon physics

Xu Feng

Peking University

La Thuile 2017, 03/08/2017

• Why we need lattice QCD \Rightarrow

to evaluate hadronic effects non-perturbatively from first principles

 How it works for flavor physics ⇒ powerful for standard hadronic matrix elements (h₂(p₂)|O(0)|h₁(p₁)) or (0|O(0)|h(p))

- single local operator insertion: O(0)
- only single stable hadron $|h\rangle$ or vacuum $|0\rangle$ in the initial/final state
- spatial momenta p₁, p₂ need to be small compared to 1/a (not a problem for Kaon physics, but essential for B decays)

"standard" quantities in Kaon physics: $f_{K^{\pm}}/f_{\pi^{\pm}}$ and $f_{\pm}(0)$

Flavor Lattice Averaging Group (FLAG): arXiv:1607.00299

$$f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1933(29) \implies 0.25\% \text{ error}$$

 $f_{+}^{K\pi}(0) = 0.9704(33) \implies 0.34\% \text{ error}$

Experimental information: arXiv:1411.5252, 1509.02220

$$\begin{aligned} & \mathcal{K}_{\ell 3} \implies |V_{us}|f_{+}(0) = 0.2165(4) \implies |V_{us}| = 0.2231(9) \\ & \mathcal{K}_{\mu 2}/\pi_{\mu 2} \implies \left|\frac{V_{us}}{V_{ud}}\right| \frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.2760(4) \implies \left|\frac{V_{us}}{V_{ud}}\right| = 0.2313(7) \end{aligned}$$

3/32

V_{us} from lattice QCD

• Test the CKM unitarity

 $|V_u|^2 \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.980(9) \implies 2\sigma$ deviation from 1

• Experiment + CKM unitarity + $f_{K^{\pm}}/f_{\pi^{\pm}}$ or $f_{+}(0) \Rightarrow V_{us}$ and V_{ud}

V_{us}: comparison with other determinations

- > 3σ deviation from semi-inclusive τ decay (HFAG 14) seems resolved by a new implementation of sum rules (HLMZ 17, arXiv:1702.01767)
- < 0.5% uncertainty requires the inclusion of $O(\alpha_e)$ EM corrections

"standard" quantities in Kaon physics: B_K

Short distance dominance \Rightarrow OPE \Rightarrow Wilson coeff. $C(\mu) \times \text{operator } Q^{\Delta S=2}(\mu)$

$$\mathcal{H}^{\Lambda^0}_{\text{eff}} \qquad \mathcal{H}^{\Lambda S=2}_{\text{eff}} = \frac{G_F^2 M_W^2}{16\pi^2} C(\mu) Q^{\Delta S=2}(\mu)$$

• Serve as a dominant contribution to the indirect CP violation ϵ_K $\lim_{K \to \infty} \left[\lim_{K \to \infty} \left| \frac{\mathcal{K}^0}{\mathcal{H}_{\text{eff}}^{\Delta S=2}} \right| \mathcal{K}^0 \right] = \lim_{K \to \infty} \left[\lim_{K \to \infty} \left| \mathcal{M}_{0\overline{0}}^{\text{LD}} \right| \right] = \lim_{K \to \infty} \left[\mathcal{M}_{0\overline{0}}^{\text{LD}} \right] = \lim_{K \to \infty} \left$

$$\epsilon_{K} = \exp(i\phi_{\epsilon})\sin(\phi_{\epsilon}) \left[\frac{\operatorname{Im}[\langle K^{0} | \mathcal{H}_{eff}^{LO-2} | K^{0} \rangle]}{\Delta M_{K}} + \frac{\operatorname{Im}[\mathcal{M}_{00}^{LO-2}]}{\Delta M_{K}} + \frac{\operatorname{Im}[\mathcal{A}_{0}]}{\operatorname{Re}[\mathcal{A}_{0}]} \right]$$

• Within Standard Model, only single operator with V - A structure

$$Q^{\Delta S=2} = [\bar{s}_a \gamma_\mu (1-\gamma_5) d_a] [\bar{s}_b \gamma_\mu (1-\gamma_5) d_b]$$

Beyond SM, 4 other operator possible

$$\begin{aligned} &Q_2^{\Delta S=2} = [\bar{s}_a(1-\gamma_5)d_a][\bar{s}_b(1-\gamma_5)d_b] \\ &Q_3^{\Delta S=2} = [\bar{s}_a(1-\gamma_5)d_b][\bar{s}_b(1-\gamma_5)d_a] \\ &Q_4^{\Delta S=2} = [\bar{s}_a(1-\gamma_5)d_a][\bar{s}_b(1+\gamma_5)d_b] \\ &Q_5^{\Delta S=2} = [\bar{s}_a(1-\gamma_5)d_b][\bar{s}_b(1+\gamma_5)d_a] \end{aligned}$$

FLAG average for Standard Model B_K

- B_K in NDR- $\overline{\text{MS}}$ scheme: $B_K(\mu) = \frac{\langle \overline{K^0} | Q^{\Delta S=2}(\mu) | K^0 \rangle}{\frac{8}{3} f_K^2 m_K^2}$
- Renormalization group independent *B* parameter \hat{B}_{K} : $\hat{B}_{K} = \left(\frac{\bar{g}(\mu)^{2}}{4\pi}\right)^{-\gamma_{0}/(2\beta_{0})} \exp\left\{\int_{0}^{\bar{g}(\mu)} dg\left(\frac{\gamma(g)}{\beta(g)} + \frac{\gamma_{0}}{\beta_{0}g}\right)\right\} B_{K}(\mu)$

• $N_f = 2 + 1 + 1$: $\hat{B}_K = 0.717(24)$

•
$$N_f = 2 + 1$$
:
 $\hat{B}_K = 0.763(10)$

•
$$N_f = 2$$
:
 $\hat{B}_K = 0.727(25)$

Status for BSM B_i

$$B_{i}(\mu) = \frac{\langle \overline{K^{0}} | Q_{i}(\mu) | K^{0} \rangle}{N_{i} \langle \overline{K}^{0} | \overline{s} \gamma_{5} d | 0 \rangle \langle 0 | \overline{s} \gamma_{5} d | K^{0} \rangle}, \quad \{N_{i} \in \mathcal{N}_{i} \}$$

$$\{N_2, \cdots, N_5\} = \{-5/3, 1/3, 2, 2/3\}$$

 $B_i(\mu)$ at $\mu_{\overline{\mathrm{MS}}} = 3 \text{ GeV}$

Uncontrolled systematic effects may cause the observed deviations:

- NPR renormalization
- Matching procedure
- Continuum limit

No FLAG average yet

Go beyond "standard" quantities in lattice Kaon physics

• $K \rightarrow \pi \pi$ decays and direct CP violation

Final state involve $\pi\pi$ (multi-hadron system)

- Long-distance contributions to flavor changing processes
 - ΔM_K and ϵ_K

• Rare kaon decays: $K \to \pi \nu \bar{\nu}$ and $K \to \pi \ell^+ \ell^-$

Hadronic matrix element for bilocal operators

 $\int d^4x \langle f | T[Q_1(x)Q_2(0)] | i \rangle$

$K \rightarrow \pi \pi$ decays and direct CP violation

• Kaon decays into the isospin I = 2 and 0 $\pi\pi$ states

 $\Delta I = 3/2 \text{ transition:} \quad \langle \pi \pi (I=2) | H_W | K^0 \rangle = A_2 e^{i\delta_2}$ $\Delta I = 1/2 \text{ transition:} \quad \langle \pi \pi (I=0) | H_W | K^0 \rangle = A_0 e^{i\delta_0}$

- If CP symmetry were protected $\Rightarrow A_2$ and A_0 are real amplitudes
- $\bullet\,$ Direct CP violation is described by the parameter ϵ'

$$\epsilon' = \frac{ie^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \frac{\operatorname{Re}[A_2]}{\operatorname{Re}[A_0]} \left(\frac{\operatorname{Im}[A_2]}{\operatorname{Re}[A_2]} - \frac{\operatorname{Im}[A_0]}{\operatorname{Re}[A_0]} \right)$$

• ϵ' is 1000 times smaller than the indirect CP violation ϵ_K

PDG: $|\epsilon'| = 3.70(53) \times 10^{-6}$, $|\epsilon| = 2.228(11) \times 10^{-3}$

Thus direct CP violation ϵ' is very sensitive to New Physics

Recent results for $K \rightarrow \pi \pi (I = 2)$

Results for A2 [RBC-UKQCD, PRD91 (2015) 074502]

• Use two ensembles (both at m_{π} = 135 MeV) for continuum extrapolation

 $48^3 \times 96$, a = 0.11 fm, L = 5.4 fm $64^3 \times 128$, a = 0.084 fm, L = 5.4 fm

• After continuum extrapolation:

$$\begin{aligned} &\operatorname{Re}[A_2] = 1.50(4)_{\operatorname{stat}}(14)_{\operatorname{syst}} \times 10^{-8} \text{ GeV} \\ &\operatorname{Im}[A_2] = -6.99(20)_{\operatorname{stat}}(84)_{\operatorname{syst}} \times 10^{-13} \text{ GeV} \end{aligned}$$

• Experimental measurement:

 $\operatorname{Re}[A_2] = 1.479(3) \times 10^{-8} \text{ GeV}$ $\operatorname{Im}[A_2]$ is unknown

• Scattering phase at $E_{\pi\pi} = M_K$

 $\delta_2 = -11.6(2.5)(1.2)^{\circ}$

consistent with phenomenological analysis [Schenk, '91]

Resolve the puzzle of $\Delta I = 1/2$ rule

$\Delta I = 1/2$ rule: $A_0 = 22.5 \times A_2$

• $\operatorname{Re}[A_2]$ is dominated by diagrams C_1 (left) and C_2 (right)

• Opposite sign in C_1 and C_2 leads to large cancellation in $\operatorname{Re}[A_2] \propto C_1 + C_2$

Puzzle of $\Delta I = 1/2$ rule is resolved from first principles

13/3

Recent results for $K \rightarrow \pi \pi (I = 0)$

Results for A₀ [RBC-UKQCD, PRL115 (2015) 212001]

• Use a $32^3 \times 64$ ensemble, *a* = 0.14 fm, *L* = 4.53 fm

 $M_{\pi} = 143.1(2.0) \text{ MeV}, \quad M_{K} = 490(2.2) \text{ MeV}, \quad E_{\pi\pi} = 498(11) \text{ MeV}$

- G-boundary condition is used: non-trivial to tune the volume $\Rightarrow M_K = E_{\pi\pi}$
- The largest contributions to Re[A₀] and Im[A₀] come from Q₂ (current-current) and Q₆ (QCD penguin) operator

Results for $\operatorname{Re}[\mathcal{A}_0]$, $\operatorname{Im}[\mathcal{A}_0]$ and $\operatorname{Re}[\epsilon'/\epsilon]$

- Determine the $K \rightarrow \pi \pi (I = 0)$ amplitude A_0
 - Lattice results

$$\begin{split} &\operatorname{Re}[\mathcal{A}_0] = 4.66(1.00)_{\mathrm{stat}}(1.26)_{\mathrm{syst}} \times 10^{-7} \text{ GeV} \\ &\operatorname{Im}[\mathcal{A}_0] = -1.90(1.23)_{\mathrm{stat}}(1.08)_{\mathrm{syst}} \times 10^{-11} \text{ GeV} \end{split}$$

Experimental measurement

 $\operatorname{Re}[A_0] = 3.3201(18) \times 10^{-7} \text{ GeV}$ $\operatorname{Im}[A_0]$ is unknown

• Determine the direct CP violation $\operatorname{Re}[\epsilon'/\epsilon]$

$$\begin{split} &\operatorname{Re}[\epsilon'/\epsilon] = 0.14(52)_{\mathrm{stat}}(46)_{\mathrm{syst}} \times 10^{-3} & \text{Lattice} \\ &\operatorname{Re}[\epsilon'/\epsilon] = 1.66(23) \times 10^{-3} & \text{Experiment} \end{split}$$

2.1 σ deviation \Rightarrow require more accurate lattice results

Long-distance contributions to flavor changing processes

ΔM_K and ϵ_K

$K^0 - \overline{K^0}$ mixing

 K^0 - $\overline{K^0}$ mixing: time evolution

$$i\frac{d}{dt}\begin{pmatrix}K^{0}\\\overline{K}^{0}\end{pmatrix} = \left[\begin{pmatrix}M_{00} & M_{0\overline{0}}\\M_{\overline{0}0} & M_{\overline{0}\overline{0}}\end{pmatrix} - \frac{i}{2}\begin{pmatrix}\Gamma_{00} & \Gamma_{0\overline{0}}\\\Gamma_{\overline{0}0} & \Gamma_{\overline{0}\overline{0}}\end{pmatrix}\right]\begin{pmatrix}K^{0}\\\overline{K}^{0}\end{pmatrix}$$

• To 2_{nd} -order in H_W

$$M_{ij} = M_{K} \delta_{ij} + \langle i | H_{W} | j \rangle + \mathcal{P} \oint_{\alpha} \frac{\langle i | H_{W} | \alpha \rangle \langle \alpha | H_{W} | j \rangle}{M_{K} - E_{\alpha}}$$
$$\Gamma_{ij} = 2\pi \oint_{\alpha} \langle i | H_{W} | \alpha \rangle \langle \alpha | H_{W} | j \rangle \,\delta(E_{\alpha} - M_{K})$$

• ΔM_K and ϵ_K is related to $\operatorname{Re}[M_{0\overline{0}}]$ and $\operatorname{Im}[M_{0\overline{0}}]$, respectively

 $\Delta M_{K}=M_{K_{S}}-M_{K_{L}}=2\mathrm{Re}[M_{0\bar{0}}]$

$$\epsilon_{\mathcal{K}} = e^{i\phi_{\epsilon}}\sin(\phi_{\epsilon}) \left[\frac{\operatorname{Im}[M_{0\bar{0}}]}{\Delta M_{\mathcal{K}}} + \frac{\operatorname{Im}[A_{0}]}{\operatorname{Re}[A_{0}]} \right], \quad \phi_{\epsilon} = \arctan \frac{\Delta M_{\mathcal{K}}}{\Delta \Gamma_{\mathcal{K}}/2}$$

Long-distance contribution: $\Delta M_{\mathcal{K}}$ and $\epsilon_{\mathcal{K}}$

• $\Delta M_K \Rightarrow \operatorname{Re}[M_{0\overline{0}}] \Rightarrow \mathsf{CP}$ conserving part of $K^0 \overline{K^0}$ mixing

Dominant contribution from charm-charm loop: $\lambda_c^2 \frac{m_c^2}{M_W^2} > \lambda_t^2 \frac{m_t^2}{M_W^2}$ \Rightarrow historically led to the predication of the mass of charm quark

• $\epsilon_K \Rightarrow \text{Im}[M_{0\bar{0}}] \Rightarrow \text{CP}$ violating part of $K^0 - \overline{K^0}$ mixing

Top-top, top-charm and charm-charm loops compete in size \Rightarrow important top-top loop, thus ϵ_K is sensitive to the CKM input V_{cb}

• Use $32^3 \times 64$ ensemble: 1/a = 1.37 GeV, $m_{\pi} = 170$ MeV and $m_c = 750$ MeV [Preliminary results, from Z. Bai, N. Christ]

• New project: $64^3 \times 128$, 1/a = 2.38 GeV, $m_c = 1.2$ GeV, $m_{\pi} = 140$ MeV

• Based on 60 configurations: $\Delta M_{\mathcal{K}} = 4.0(2.4) \times 10^{-12} \text{ MeV}$

Results for ϵ_{K}

$\lambda_t \lambda_u$ contribution to ϵ_K [calculated by Z. Bai, RBC-UKQCD]

• Without top quark in the lattice QCD calculation, logarithmic divergence

- Subtract $X_{ij}(\mu)[(\bar{s}d)_{V-A}(\bar{s}d)_{V-A}]$ to remove the lattice cutoff effects
- We thus define the bilocal operator in the RI/SMOM scheme
- Preliminary results at m_{π} = 340 MeV and m_c = 970 MeV

μ_{RI}	$\operatorname{Im} M_{\bar{0}0}{}^{ut,RI}$	$\operatorname{Im} M_{\bar{0}0}^{ut,RI \to \overline{MS}}$	$\operatorname{Im} M_{\bar{0}0}{}^{ut, ld corr}$	contribution to ε_K
1.54	-1.30(69)	0.352	-0.95(69)	$0.186(135) imes 10^{-3}$
1.92	-1.49(69)	0.476	-1.01(69)	$0.199(135) imes 10^{-3}$
2.11	-1.58(69)	0.537	-1.04(69)	$0.205(135) imes 10^{-3}$
2.31	-1.65(69)	0.599	-1.05(69)	$0.206(135) imes 10^{-3}$
2.56	-1.73(69)	0.674	-1.06(69)	$0.207(135) imes 10^{-3}$

Experimental value for $|\epsilon_K| = 2.228 \times 10^{-3}$

Rare Kaon decays

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Experiment vs Standard model

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: largest top quark contribution, thus theoretically clean

$$\mathcal{H}_{eff} \sim \frac{G_F}{\sqrt{2}} \cdot \underbrace{\frac{\alpha_{\rm EM}}{2\pi \sin^2 \theta_W} \lambda_t X_t(x_t)}_{\mathcal{N} \sim 2 \times 10^{-5}} \cdot (\bar{s}d)_{V-A} (\bar{\nu}\nu)_{V-A}$$

Probe the new physics at scales of $\mathcal{N}^{-\frac{1}{2}}M_W = O(10 \text{ TeV})$

Past experimental measurement is 2 times larger than SM prediction

 $\begin{array}{l} {\sf Br}({\cal K}^+ \to \pi^+ \nu \bar{\nu})_{\rm exp} = 1.73^{+1.15}_{-1.05} \times 10^{-10} & [{\sf BNL \ E949, \ '08}] \\ {\sf Br}({\cal K}^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = 9.11 \pm 0.72 \times 10^{-11} & [{\sf Buras \ et. \ al., \ '15}] \end{array}$

but still consistent with > 60% exp. error

New experiments

New generation of experiment: NA62 at CERN

- aims at observation of O(100) events in 2-3 years
- 10%-precision measurement of $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})$

$K_L \to \pi^0 \nu \bar{\nu}$

- even more challenging since all the particles involved are neutral
- only upper bound was set by KEK E391a in 2010
- new KOTO experiment at J-PARC designed to observe K_L decays

OPE: integrate out the heavy fields, Z, W, t, \cdots

Bilocal contribution vs local contribution

Bilocal $C_A^{\overline{MS}}(\mu)C_B^{\overline{MS}}(\mu)r_{AB}^{\overline{MS}}(\mu)$ vs Local $C_0^{\overline{MS}}(\mu)$ [Buras, Gorbahn, Haisch, Nierste, '06]

At μ = 2.5 GeV, 50% charm quark contribution from bilocal term

Lattice results

First results at m_{π} = 420 MeV, m_c = 860 MeV [RBC-UKQCD, arXiv:1701.02858]

27 / 32

Charm quark contribution P_c

 $P_c = P_c^{\rm SD} + \delta P_{c,u}$

NNLO QCD [Buras, Gorbahn, Haisch, Nierste, '06]:

 $P_c^{\rm SD} = 0.365(12)$

Phenomenological ansatz [Isidori, Mescia, Smith, '05]

 $\delta P_{c,u} = 0.040(20)$

Lattice results

 $\Delta P_{c,u} = 0.0040(\pm 13)_{\rm stat}(\pm 32)_{\rm syst}(-45)_{\rm FV}$

- Cancellation in W-W and Z-exchange diagrams leads to small $\Delta P_{c,u}$
- Important to check whether such large cancellation also occurs for physical quark masses

• CP conserving decays $K^+ \to \pi^+ \ell^+ \ell^-$ and $K_S \to \pi^0 \ell^+ \ell^-$ are dominated by long-distance contribution induced by photon exchange

$$T^{\mu}_{+,S} = \int d^{4}x \, e^{iqx} \langle \pi(p) | T \{ J^{\mu}_{em}(x) \mathcal{H}^{\Delta S=1}(0) \} | K_{+,S}(k) \rangle$$

= $\frac{G_{F} M^{2}_{K}}{(4\pi)^{2}} V_{+,S}(z) [z(k+p)^{\mu} - (1-r^{2}_{\pi})q^{\mu}]$

with
$$q=k-p$$
, $z=q^2/M_K^2$, $r_\pi=M_\pi/M_K$

- Calculation of $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ can be compared with Exp. + ChPT analysis
- $V_+(z)$ useful for test of lepton flavor universality violation in rare K decays
- Results for $K_S \rightarrow \pi^0 \ell^+ \ell^-$ can be used for the evaluation of the significant interference between direct and indirect CP violation
 - Even the sign of $a_S = V_S(0)$ is useful

summarized by Jorge Portoles at Kaon 2016

Process	Br x 10 ⁸	a	b	b/a
$K^+ \to \pi^+ e^+ e^-$	31.4 ± 1.0	-0.578 ± 0.016	-0.779 ± 0.066	~ 1.35
$K^+ \to \pi^+ \mu^+ \mu^-$	9.62 ± 0.25	-0.575 ± 0.039	-0.813 ± 0.145	~ 1.41

Lattice results for $K^+ \rightarrow \pi^+ \ell^+ \ell^-$

Use 24³ × 64 ensemble [RBC-UKQCD, PRD94 (2016) 114516]

 $1/a = 1.78 \text{ GeV}, m_{\pi} = 430 \text{ MeV}, m_{K} = 625 \text{ MeV}, m_{c} = 530 \text{ MeV}$

Momentum dependence of $V_+(z)$

 $V_+(z) = a_+ + b_+ z$, $\Rightarrow a_+ = 1.6(7), b_+ = 0.7(8)$

Compare with experimental data + phenomenological analysis

Process	Br x 10 ⁸		b	b/a
$K^+ \to \pi^+ e^+ e^-$	31.4 ± 1.0	-0.578 ± 0.016	-0.779 ± 0.066	~ 1.35
$K^+ \to \pi^+ \mu^+ \mu^-$	9.62 ± 0.25	-0.575 ± 0.039	-0.813 ± 0.145	~ 1.41

- For "standard" quantities such as f_K/f_π , $f_+(0)$ B_K , lattice calculation reach the precision of O(1%) or better
- It's time to go beyond "standard"
 - $K \rightarrow \pi\pi$ and ϵ'
 - ΔM_K and ϵ_K
 - rare kaon decays: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $K^+ \rightarrow \pi^+ \ell^+ \ell^-$
- Lattice QCD is now capable of first-principles calculation of the above "beyond-standard" quantities
- Realistic calculation await for the next generation of super-computers