Heavy Ion Physics with ALICE - recent results -

Jochen Klein¹ for the ALICE Collaboration

¹CERN, Geneva

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile March 7 $^{\rm th}$, 2017

motivation

- heavy-ion collisions allow us to study strongly interacting matter
- quantitative understanding of medium behaviour, e.g.
 - expansion
 - ► ultimately aiming for thermodynamic properties: temperature dependence of η/s (viscosity / entropy density)
- study interaction of hard probes with medium, e.g.
 - energy loss mechanisms
- address evolution from small to large systems, e.g.
 - multiplicity dependence of particle production

→ heavy-ion collisions to do precision measurements

Jochen Klein (CERN)

heavy-ion collisions

- ▶ geometric description of collision → impact parameter b
 - \rightsquigarrow centrality (fraction of $\sigma_{geom})$
- high energy density in overlap region, non-trivial shape
- soft production of "bulk matter"
 - thermalization and hydrodynamic evolution
 - freeze-out and hadronization
- hard probes

understand evolution of bulk matter and interaction of hard probes

Jochen Klein (CERN)

ALICE detector

 \rightarrow excellent particle identification over wide p_{\perp} range, also in high-multiplicity environment of Pb−Pb

Jochen Klein (CERN)

datasets

- data collected
 - with different collision systems
 - at different energies

	Run 1 (2009 – 2013)	Run 2 (2015 – now)
рр	0.9, 2.76, 7, 8 TeV	5, 13 TeV
p–Pb	5.02 TeV	5.02, 8.16 TeV
Pb–Pb	2.76 TeV	5.02 TeV

- ▶ in the following focus on new results, i.e.
 - new type of analysis on run 1 data
 - precision measurement on run 2 data

\rightsquigarrow systematic study of system and energy dependence

Jochen Klein (CERN)

particle production

- ▶ p_{\perp} spectra for π , K, p (identified by ITS, TPC, TOF, HMPID)
- exponential (low p_{\perp}) + power law (high p_{\perp})
- evolution from central
 to peripheral
 events

\rightsquigarrow precision measurements of particle production

Jochen Klein (CERN)

collective expansion

- assume collective expansion with:
 - fluid velocity $\beta_{\rm T}$
 - kinetic freeze-out temperature $T_{\rm kin}$

→ radial flow (Boltzmann-Gibbs blast-wave model) [Schnedermann et al., PRC 48, 2462]

- simultaneous fit to π , K, p spectra
- system expanding with nearly $\frac{2}{3}c$

 \rightsquigarrow spectra consistent with collective expansion

confirmed by more detailed modelling by relativistic hydrodynamics

Jochen Klein (CERN)

azimuthal anisotropy

- eccentricity and fluctuations of initial state + interaction
 azimuthal modulation
- decomposition into Fourier components:

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{\mathrm{d}^{2}N}{2\pi \,p_{\perp}\mathrm{d}p_{\perp}\mathrm{d}y} \left(1 + \sum_{n=1}^{\infty} 2\,\nu_{n}\cos(n(\varphi - \psi_{n}))\right)$$

exploiting particle identification

\rightsquigarrow mass ordering as expected from hydrodynamic evolution

azimuthal anisotropy

- eccentricity and fluctuations of initial state + interaction
 azimuthal modulation
- decomposition into Fourier components:

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{\mathrm{d}^{2}N}{2\pi \,p_{\perp}\mathrm{d}p_{\perp}\mathrm{d}y}\left(1 + \sum_{n=1}^{\infty} 2\,\nu_{n}\cos(n(\varphi - \psi_{n}))\right)$$

exploiting particle identification

 \rightsquigarrow mass ordering as expected from hydrodynamic evolution

nuclear modification factor

compare Pb−Pb collision with incoherent pp superposition, here for p_⊥ spectra:

suppression of particle yields \rightsquigarrow energy loss

Jochen Klein (CERN)

heavy-flavour production

[CMS-HIN-14-005, arXiv:1610.00613]

- smaller energy loss expected for heavier particles
- D mesons as probes for open charm
- ► non-prompt J/ψ as proxy for open beauty

→ strong suppression also in the heavy-flavour sector

Jochen Klein (CERN)

charmonium

- production of $c\bar{c}$ pairs
- ► charmonium states (J/ψ, ψ(2S),...) take double role
 - dissociation
 - recombination
- consider J/ψ
 - nuclear modification factor
 - elliptic flow

\rightsquigarrow consistent with recombination, strong interaction with the medium

Jochen Klein (CERN)

charmonium

- production of $c\overline{c}$ pairs
- ► charmonium states (J/ψ, ψ(2S),...) take double role
 - dissociation
 - recombination
- consider J/ψ
 - nuclear modification factor
 - elliptic flow

\rightsquigarrow consistent with recombination, strong interaction with the medium

Jochen Klein (CERN)

jet suppression

measure nuclear modification factor for jets (anti-kt, R = 0.2)

also jets are strongly suppressed \Rightarrow interesting to **further characterize jets**

Jochen Klein (CERN)

jet production

- use two-particle correlations to measure jet-induced yields
- compare Pb–Pb and pp

\rightsquigarrow enhancement of low- p_{\perp} fragments around jet

Jochen Klein (CERN)

jet mass

- charged anti-kt jets, R = 0.4, E-scheme
- reconstruct invariant mass:

$$M = \sqrt{E^2 - p_\perp^2 - p_z^2}$$

sensitive to jet quenching
 compare with p–Pb
 compare with models

 models implementing quenching deviate from data

first measurement of jet mass in Pb−Pb → important constraint for improvement of models

Jochen Klein (CERN)

jet mass

- charged anti-kt jets, R = 0.4, E-scheme
- reconstruct invariant mass:

$$M = \sqrt{E^2 - p_\perp^2 - p_z^2}$$

- sensitive to jet quenching
 - compare with p–Pb
 - compare with models
- models implementing quenching deviate from data

first measurement of jet mass in Pb–Pb \rightsquigarrow important constraint for improvement of models

Jochen Klein (CERN)

chiral magnetic effect

- strong magnetic field generated because of chiral anomaly
 ~> charge separation
- measure by using correlations in events of different v₂ (event shape engineering)
- extract CME fraction

ightarrow testing fundamental QCD: upper limit for CME fraction: $\sim 20\%$

Jochen Klein (CERN)

chiral magnetic effect

- strong magnetic field generated because of chiral anomaly
 ~> charge separation
- measure by using correlations in events of different v₂ (event shape engineering)

extract CME fraction

\rightsquigarrow testing fundamental QCD: upper limit for CME fraction: $\sim 20\%$

Jochen Klein (CERN)

chiral magnetic effect

- strong magnetic field generated because of chiral anomaly
 ~> charge separation
- measure by using correlations in events of different v₂ (event shape engineering)
- extract CME fraction

\rightsquigarrow testing fundamental QCD: upper limit for CME fraction: $\sim 20\%$

particle moments

- ALICE
- net particle production:
 - $egin{aligned} & x := \mathit{N}_{\mathrm{p}} \mathit{N}_{ar{\mathrm{p}}} \ & \kappa_2(x) := \langle x^2
 angle \langle x
 angle^2 \end{aligned}$
- fluctuations linked to thermodynamic properties
- participant fluctuations
 vanish for κ₂
- ► baryon number conservation → deviation from Skellam

[P. Braun-Munzinger et al., arXiv:1612.00702, NPA in print]

\leadsto agreement with lattice QCD calculations

Jochen Klein (CERN)

strangeness production

now moving to small systems

- reconstruct strange particles, here K⁰_s and Λ as function of the event multiplicity
- compare scaling at different energies

\rightsquigarrow strangeness production scales with $dN/d\eta$ (across energies)

Jochen Klein (CERN)

J/ψ production

- ► measure J/ψ yield as function of multiplicity
- expressed as self-normalized yields

~ multiplicity dependence reasonably well modelled

Jochen Klein (CERN)

Heavy Ion Physics with ALICE

La Thuile, Mar 2017 18 / 20

future plans

Pb–Pb runs

- Pb–Pb run 2018
- Pb-Pb runs during run 3 target: 10 nb⁻¹

run 3 to do high-precision measurements of

- heavy flavour and quarkonia
- jets
- Iow mass dileptons
- heavy nuclear states

upgrades during long shutdown 2 (2019 - 2020)

- Time Projection Chamber:
 - replace MWPCs with GEMs
 - \rightarrow continuous read-out to benefit from 50 $\rm kHz$ of Pb–Pb collisions
- Inner Tracking System:
 - complete replacement by MAPS-based detector

Jochen Klein (CERN)

conclusions

- many new results, both
 - new types of analysis on run 1 data
 - precision measurements from run 2 data
- small systems interesting and useful to study evolution to large (Pb–Pb) systems
- moving towards precision measurements of heavy-ion collisions

Thank you!

Jochen Klein (CERN)

Backup

Jochen Klein (CERN)

Heavy Ion Physics with ALICE

La Thuile, Mar 2017 21 / 20

Global event characteristics

here: forward multiplicities

- impact parameter ~>> geometry BUT: not directly measurable translates to multiplicity
- classify events
 - by centrality:

$$C = rac{\sigma(b \leq b_0)}{\sigma_{ ext{had}}}$$

 by reaction plane measured from anisotropic particle emission

high multiplicities, e.g. for 10 % most central events: \sim 140 GeV per unit area in $\eta\text{-}\varphi$

Jochen Klein (CERN)