Mixing and CP violation in B and D meson systems at LHCb

On behalf of the LHCb collaboration

University of Oxford

8 March 2017

Anita Nandi (Oxford)

8 March 2017 1 / 25

- Studying CP violation in b and c hadrons gives great insight into the CKM matrix
- Overconstraining the matrix \rightarrow potential signs of New Physics
- To study CP violation \rightarrow collect data using the LHCb detector:

Run	Year	Luminosity	COM energy
Run 1	2011	$1 \mathrm{fb}^{-1}$	7 TeV
	2012	2fb^{-1}	8 TeV
Run 2	2015	$0.3 fb^{-1}$	13 TeV
	2016	$1.5 {\rm fb}^{-1}$	13 TeV
	2017-18	$\sim 3.2 {\rm fb}^{-1}$	13 TeV

 At 13 TeV b and c production cross sections are higher and improved triggers mean that most HF decays gain at least a factor 2 in yield per fb⁻¹ in Run 2 compared to Run 1

CP violation

There are three types of CP violation:

• Direct CP violation (in decay)

$$\Gamma(B^- o DK^-)
eq \Gamma(B^+ o DK^+)$$

• Indirect CP violation (in mixing)

• CP violation from interference between mixing and decay

1) Combined measurement of CKM angle γ

- 2 Charm mixing and CPV in $D^0 \rightarrow K^{\pm} \pi^{\mp}$
- 3 Measurement of A_{Γ} in $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$
- (4) Search for phase-space dependent CPV in $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$
- 5 Further prospects for CP violation

Combined measurement of CKM angle γ

Combined measurement of CKM angle γ (JHEP 12 (2016) 087)

• **Direct measurements** of γ extracted only from tree level processes

• Indirect measurement from global fits to CKM triangle

• Precision to the level of $\sim 1^\circ$ from direct measurements could reveal inconsistencies \to possible New Physics

Combined measurement of CKM angle γ (JHEP 12 (2016) 087)

- \bullet A wide range of γ sensitive mode are targeted at LHCb
- ullet Investigating as many modes as possible improves the sensitivity to γ

Combined measurement of CKM angle γ (JHEP 12 (2016) 087)

- Combine observables from a wide range of γ sensitive decays
- External inputs from HFAG, CLEO and LHCb are used in the combination
- Use a frequentist approach, construct a likelihood function
- Baysian procedure is performed and found consistent

• World's most precise direct measurement of γ from a single experiment

Anita Nandi (Oxford)

Future for γ measurements (LHCb-CONF-2016-014, CKM 2016)

- Performed extensive work on Run 1 data. Now exploit the expanding Run 2 dataset
- Expand scope of γ analyses \rightarrow **explore new modes**
- New mode $B^{\pm} \rightarrow D(hh)K^{*\pm}$ uses Run 1 and Run 2 data
- Two-body D decays: $D^0 \rightarrow K^- \pi^+$ (favoured), $K^+ K^-, \pi^+ \pi^-, K^+ \pi^-$

• Differences in the rates of \mathbf{B}^+ and \mathbf{B}^- decays gives sensitivity to γ

Anita Nandi (Oxford)

- Simultaneous fit to the different D modes → CP observables
- Interpret in terms of the **physics parameters** r_B , δ_B and γ

- \bullet Promising for the sensitivity of future γ measurements
- Use the full 2016 dataset, explore more D modes \rightarrow set limits on r_B
- Continue to expand range of γ sensitive modes
- Full Run 2 dataset is expected to reduce precision on γ to about 4°

Charm mixing and CPV in $D^0 ightarrow K^\pm \pi^\mp$

Charm mixing and CPV in $D^0 o K^\pm \pi^\mp$ (arXiv:1611.06143, submitted to PRD)

Motivation

- CP violation has not yet been observed in the charm sector
- Improve understanding of mixing in the charm sector
- Flavour and mass eigenstates differ $\rightarrow D^0 \bar{D^0}$ mixing • Define dimensionless mixing parameters:

$$\begin{aligned} x &= \frac{m_2 - m_1}{\Gamma}, \qquad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma} \qquad (|x| \ll 1 \text{ and } |y| \ll 1) \\ x' &= x \cos \delta_{K\pi} + y \sin \delta_{K\pi} \qquad y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi} \end{aligned}$$

• Measurements of the time-dependent ratio of WS-to-RS decay rates:

$$R(t)^{\pm} = \underbrace{R_D^{\pm}}_{DCS} + \underbrace{\sqrt{R_D^{\pm} y^{'\pm} \left(\frac{t}{\tau}\right)}}_{interference} + \underbrace{\frac{(x^{'\pm})^2 + (y^{'\pm})^2}{4} \left(\frac{t}{\tau}\right)^2}_{mixing}$$

 $R(t)^+$ and $R(t)^-$ for initially produced D^0 and $ar{D^0}$

• Fits to RS and WS samples allow extraction of the CP violation and mixing parameters: R_D^{\pm} , $(x'^{\pm})^2$ and y'^{\pm}

Direct CPV occurs if: $R_D^+ \neq R_D^-$ CPV in mixing occurs if: $x^+ \neq x^-$ and $y^+ \neq y^-$

Charm mixing and CPV in $D^0 o K^\pm \pi^\mp$ (arXiv:1611.06143, submitted to PRD)

- Data sample: Full Run 1 dataset
- Uses **doubly-tagged (DT)** charm sample from $\overline{B} \to D^{*+}\mu^-X$, $D^{*+} \to D^0\pi_s^+$, $D^0 \to K^{\pm}\pi^{\mp} \to \text{very}$ **pure samples**
- Lower statistics than prompt, but cover a different region of decay time

Charm mixing and CPV in $D^0 o K^{\pm}\pi^{\mp}$ (arXiv:1611.06143, submitted to PRD)

- Extract R[±] from RS and WS **yields** in bins of decay time
- Red points are DT analysis, black points are a previous analysis using prompt charm
- Data is consistent with the hypothesis of CP symmetry
- Results from DT analysis are consistent with the prompt
- Simultaneous fit to DT and prompt samples \rightarrow precision of measured parameters improves by 10-20% compared to prompt sample only

Measurement of A_{Γ} in $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$

Time dependent CP asymmetry of $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$:

$$A_{CP}(t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D^0}(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D^0}(t) \to f)} \approx a_{dir}^f - A_{\Gamma} \frac{t}{\tau_D}$$

where A_{Γ} is the asymmetry between the D^0 and $\overline{D^0}$ effective widths

$$A_{\Gamma} \equiv \frac{\hat{\Gamma}_{D^0 \to f} - \hat{\Gamma}_{\bar{D^0} \to f}}{\hat{\Gamma}_{D^0 \to f} + \hat{\Gamma}_{\bar{D^0} \to f}}$$

To first order, $a_{dir}^f = 0$ and A_{Γ} is independent of final state

${\cal A}_{\Gamma} \mbox{ in } D^0 ightarrow {\cal K}^+ {\cal K}^- \mbox{ and } D^0 ightarrow \pi^+ \pi^-$ (arXiv:1702.06490, submitted to PRL)

New method using full Run 1 dataset

$$A_{CP}(t) = a^f_{dir} - A_{\Gamma} rac{t}{ au_D}$$

- Linear fit to the asymmetry as a function of decay time
- Determine and correct for detector asymmetries

- Precision improved by almost a factor of 2 from 1 fb⁻¹ analysis
- Old method was performed, found to be consistent
- Calculate average A_{Γ} , and combine with muon tagged sample
- Most precise A_{Γ} measurement: $A_{\Gamma} = (-0.29 \pm 0.28) \times 10^{-3}$

Search for phase-space dependent CPV in $D^0 \to \pi^+\pi^-\pi^+\pi^-$

Search for CPV in $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$ (arXiv:1612.03207v2, submitted to PLB)

- Model independent method to test if data is consistent with no CPV
- Energy test: statistical comparison between D^0 and D^0 based on distances of event pairs in phase space

 $T = \langle d_{ij}
angle_{DD} + \langle d_{ij}
angle_{ar{D}ar{D}} - \langle d_{ij}
angle_{Dar{D}}$

- **First application** of this test in 4-body decays
- Calculate T-values from randomly separated samples (no CPV)
- 5D phase space: $m^2(\pi\pi)$, $m^2(\pi\pi\pi) \rightarrow$ **P-even CPV**

Anita Nandi (Oxford)

8 March 2017 20 / 25

Further prospects for CP violation

$B^0_s o \eta_c \phi$ and $B^0_s o \eta_c \pi^+\pi^-$ (arXiv:1702.08048, submitted to JHEP)

Motivation

- Sensitive to CP violating phase $\phi_{\rm s}$ (interference between mixing and decay)
- ϕ_s is well predicted in SM and sensitive to possible NP
- Purely **CP-even final state** \rightarrow no angular analysis required
- Golden channel for $\phi_s~(pprox -2 eta_s)$ measurements: $B^0_s o J/\psi \phi$
- Superposition of CP-even and CP-odd states → requires analysing angular distribution of final state particles

- Not yet enough statistics to perform time-dependent analysis
- Perform measurement of branching fractions

 $B^0_s o \eta_c \phi$ and $B^0_s o \eta_c \pi^+ \pi^-$ (arXiv:1702.08048, submitted to JHEP)

Full Run 1 dataset

BDT-based selection and PID requirements

Anita Nandi (Oxford)

Search for CPV in $\Lambda^0_b o p {\cal K}^- \mu^+ \mu^-$ (arXiv:1703.00256, submitted to JHEP)

Motivation

- First evidence for CPV in baryon decays in $\Lambda^0_b o p \pi^- \pi^+ \pi^{-1}$
- FCNC process, loop diagrams \rightarrow New Physics (NP) ²
- $\bullet\,$ Limited amount of CPV expected in SM \rightarrow sensitive to NP

¹Charmless b-hadron decays at LHCb, Giulio Dujany. Thursday afternoon

 2 New physics searches with $b o s \prime l$ transitions and rare decays at LHCb, Kristof De Bruyn. Wednesday afternoon

Anita Nandi (Oxford)

- World's most precise direct measurement of γ continues to improve
- Measurements of CP violation in the charm sector with D⁰ → K[±]π[∓] and D⁰ → π⁺π⁻π⁺π⁻ are consistent with CP-symmetry
- Most precise measurement of A_{Γ} to date
- Further CPV prospects with $B_s^0 \to \eta_c \phi$ and $B_s^0 \to \eta_c \pi^+ \pi^-$, and $\Lambda_b^0 \to p K^- \mu^+ \mu^-$
- Many more exciting results to come with Run 2 data

Thanks for listening! Any Questions?

Backups

- Fits performed to extract R^{\pm} in five bins of decay time
- Time dependence of these ratios is fit by minimizing:

$$\chi^{2} = \sum_{i} \underbrace{\left[\left(\frac{r_{i}^{+} - \widetilde{R}(t_{i})^{+}}{\sigma_{i}^{+}} \right)^{2} + \left(\frac{r_{i}^{-} - \widetilde{R}(t_{i})^{-}}{\sigma_{i}^{-}} \right)^{2} \right]}_{\frac{measured - expected}{error} \text{ for each bin}} + \underbrace{\chi^{2}_{\epsilon} + \chi^{2}_{\text{peaking}} + \chi^{2}_{\text{other}}}_{\text{Gaussian constraints}} \text{ to account for uncertainties: tracking and reconstruction efficiencies and peaking backgrounds}}$$

- Three fits are performed:
 - Assuming CP symmetry $(R^+ = R^-, (x'^+)^2 = (x'^-)^2$ and $y'^+ = y'^-)$
 - Requiring CP symmetry in CF and DCS amplitudes $(R^+ = R^-)$ no direct CP violation
 - Allowing all types of CP violation

 ${\cal A}_{\Gamma} \mbox{ in } D^0
ightarrow {\cal K}^+ {\cal K}^- \mbox{ and } D^0
ightarrow \pi^+ \pi^-$ (arXiv:1702.06490, submitted to PRL)

Method 2: Performed on 2012 data, combined with previous 2011 analysis

 $A_{\Gamma} \equiv \frac{\hat{\Gamma}_{D^0 \to f} - \hat{\Gamma}_{\bar{D^0} \to f}}{\hat{\Gamma}_{D^0 \to f} + \hat{\Gamma}_{\bar{D^0} \to f}}$

Fits to the D^0 and Δm spectra to determine yields

Simultaneous fit to decay time distribution and $ln(\chi^2_{IP}(D^0))$ to extract effective lifetime

Combined Run 1 results:

$$egin{aligned} & A_{\Gamma}(K^+K^-) = (-0.14\pm 0.37\pm 0.10) imes 10^{-3} \ & A_{\Gamma}(\pi^+\pi^-) = (0.14\pm 0.63\pm 0.15) imes 10^{-3} \end{aligned}$$