
Playing with FOOT stuff
[an introduction…]

A. S.
with the kind help of S.M. Valle

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

Prerequisites
➡ You know about

– C++
– root
– Fluka simulation

➡ You should have followed with GREAT
ATTENTION the tutorial from Giuseppe
yesterday

➡ Everything is supposed to work….
“requiring only minimal configuration
and tweaking”….

– at the current status of the software
development we are basically around
here….

2

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The beginning…
➡ Now that I have been taught on how to produce and tuple a root file…. what

am I supposed to do?
– Be happy! Producing the root file for the input was not an easy task anyway!
– If someone produced the root file for you…. be happy anyway! Someone did the job

for you!

➡ For the rest of the tutorial we assume that the input will be MC and that
someone already did the job: tuples to be digested can be found on the
cluster..

– Root file: FOOT_EMFon*.root containing 500k events of 16O on C2H4 target (only
events with inelastic interaction in the target where written on output, for
compactness)

➡ The framework and its use are independent on the input. whenever
something will be strictly dependent on the input, it will be stated..
Otherwise everything it is said is supposed to be working/running
independently on data or MC.

3

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

Disclaimers
➡ Everything that is in place in inherited by FIRST: everything HAS TO BE

RECHECKED
– you cannot assume that it will work, and you have to re-understand how it is coded and

why if you plan to use it.

➡ Most of the code is a “placeholder” for the future developments that will come.
And it has to be re-implemented from scratch.

➡ Tips:
– If you want to know what’s available -> look at the header: .hxx
– If you want to know how it’s done -> look at the implementation: .cxx

➡ BEFORE coding new stuff check if something is already there!!!!
➡ For now, the only git command that you need to know (and operate with great

care) is “git pull”.
– Before we can find ourselves discussing the terrific power of “git push” a guide for the

developers will be prepared (by the software coordinator or whoever she/he will appoint
for this task)

4

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The hardest part
➡ Knowing what you have to do and where to put your hands.
➡ Strategy adopted here: start from use cases….

1. I am a fan of Drift Chambers.. I’d like to play with them…. FOOT has a lot of
them (2!). Where do I start?

2. I am an addicted of TPC chambers readout with GEMs…. It seems that you are
missing them in your FOOT “stuff ”.. Can I help?

3.I want to know the truth. Can you show me the truth?
4. I dream about Kalman Filters every night. Seems that you are still missing one..

I would be so happy to contribute….

5

➡ Those cases will be illustrated in detail, trying to
provide guidance for the user needs that have
been presented so far. This will be also the
introductory part to the hands-on tutorial…

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The DC fan (I)
➡ There’s a detector that is already present in the

framework/simulation and I have to work on it. Where
do I find what I need?

– The tools (libraries) needed to do what you have to do are
under the framework folder:

• TAG* folder: base classes (general purpose)
• TAXX*base folders: implement what is specific for given

detectors. XX decoding needs your imagination ;)
– To understand what is available our DC friend can have a

look inside:
• TABMbase (Beam Monitor -> BM) coding the monitor

before the target
• TADCbase (Drift Chamber ->DC) coding the drift chamber

after the magnets

6

ls -1 libs/src/
TAGbase
TAGfoot
TAGmclib

TABMbase
TACAbase
TADCbase
TAIRbase
TAITbase
TATWbase
TAVTbase

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The DC fan (II): TABMbase
➡ There is indeed already a LOT of stuff!!!!

– TABMact*: those are the actions executed by the framework
at each call of NextEvent(). They take care of providing a
given output (e.g. BM hits or BM tracks) starting from a
given input (e.g. MC info or BM hits) and some external info
(e.g. the BM geometry or cabling layout or calibration info)

– TABMdat* and TABMntu* are the BM objects that are
handling all the information that needs to be stored event by
event: e.g. TABMdatRaw stores the “raw data”, the
TABMntuRaw stores the “collection of hits / hits info” the
TABMntuTrack stores the “collection of tracks / track info”.

– TABMparGeo: interface to BM geometry
– TABMparCon: interface to BM calibration
– TABMparMap: interface to BM cabling

7

TABMactDatRaw.cxx
TABMactDatRaw.hxx
TABMactNtuMC.cxx
TABMactNtuMC.hxx
TABMactNtuRaw.cxx
TABMactNtuRaw.hxx
TABMactNtuTrack.cxx
TABMactNtuTrack.hxx
TABMdatRaw.LinkDef.h
TABMdatRaw.cxx
TABMdatRaw.hxx
TABMdatRaw.icc
TABMntuRaw.LinkDef.h
TABMntuRaw.cxx
TABMntuRaw.hxx
TABMntuRaw.icc
TABMntuTrack.LinkDef.h
TABMntuTrack.cxx
TABMntuTrack.hxx
TABMntuTrack.icc
TABMparCon.LinkDef.h
TABMparCon.cxx
TABMparCon.hxx
TABMparGeo.LinkDef.h
TABMparGeo.cxx
TABMparGeo.hxx
TABMparGeo.icc
TABMparMap.LinkDef.h
TABMparMap.cxx
TABMparMap.hxx
TABMvieTrackFIRST.cxx
TABMvieTrackFIRST.hxx

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The DC fan (III): step 0
➡ I want to access what’s already there.. (the plain MC info provided by

fluka!)
➡ I look for the action TABMactNtuMC that will

– Take as input the MC truth (myStr)
– Take as input the BM calibration (myp_bmcon)
– Produce, as output, the tuples Hit information (myn_bmraw)

➡ To understand the input data: go to Giuseppe tutorial
➡ To understand the input BM calibration: go to the TABMparCon class
➡ To understand the output: go to the TABMntuRaw class
➡ Beware: the BM geometry is not used so far because in FIRST we had a

“pre-processing” of the MC info that was producing a data-like MC
output. This is now missing and has to be implemented in the
actNtuMC class explicitly calling the TABMparGeo class.

8

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The DC fan (IV): output
➡ The TABMntuRaw header: what I’m going to write in my tuple?

9

The TABMntuRaw class…
it’s just a collection of hits!

The TABMntuRawHit
class… implements the info!

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The DC fan (V): the action
➡ Constructor declares

input and output

10

➡ Action: loop on the MC
hits and tuples the info

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The DC fan (VI): possible ex.
➡ Implement access to truth link

info!
– easy.

➡ Add the “real data like”
reconstruction!

– hard. Requires to load in
the action also the
geometry, compute the
PCA and drift info from
fluka output….

➡ Implements /check the
calibration!

– eeeasy.

11

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

Interlude: global geometry
➡ Each sub-detector has a local

reference frame and lives inside a
“box” that can be placed and rotated
anywhere/in whichever way you
want

➡ The transformations from the local
and global FOOT frameworks are
handled by the TAGgeoTrafo class.
Such class is configured from a txt
file present in the config/ folder in
level0 project (currently there are
DUMMY values that have to be
checked / fixed / implemented).

12

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The TPC+ GEM addicted
➡ In this case, I have really a few things to offer…. (as TPC+GEM where

never included in the framework)
– So it is a perfect example for anyone that wants to code something from

scratch!

➡ How to include the TPC+GEM inside our decoding code?
1. Build the TATGbase empty folder, prepare a Makefile (take it from the TAIT or

TAIR folders and change the file names accordingly)
2.Define the data structure: what information will the MC produce that you have

to “tuple”? Hits? Tracks? Then you have to prepare a TATGntuXxx class
containing what you need

3.Define the MC tupling action: write a class that takes as input the MC info and
produce the TAGntuXxx object (see what is already here for the BM or other
existing detector).

4.Define the calibration and geometry classes for the detector

13

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The truth seeker (I)
➡ As we still live in the wonderful

world of MC.. at some point it
would be good to access…
“THE TRUTH”.

➡ There’s a class that is already
available and does the job for
you:

– TAGntuMCeve is the TAGdata
that contains the track/particle
block (see giuseppe’s talk from
yesterday)

– TAGactNtuMC: takes the track
block from root file and dumps it
into the TAGdata

14

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The truth seeker (II)
➡ In my “level0” job I can then define

the truth tupling action, define the
MCeve data output and add it to
the output ntuple…

➡ After calling “NextEvent()” I have
then access at the track block for
each event and I can use it and
navigate it as Giuseppe explained in
the simulation tutorial

– I can retrieve the TAGntuMCeve class
and access the hits info trough the
TAGntuMCeveHit methods…

15

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The truth seeker (III)
➡ But… what if I am interested in what happened in a given detector

and I want to relate what happened to the particles that have
interacted with my detector?

16

– It’s already possible for most
of the detectors (not all of
them have already
implemented the necessary
changes in the data class)
trough the machinery
explained by Giuseppe in
yesterday’s talk (pointer of
id-1 to the track block!)

– Exercise from Giuseppe can
be easily re-implemented in
the framework!

Retrieve the info
of MC eve from

the ROOT memory

Associate the TAVT
hits to the particle
in the track block

using the tmp_vtxid

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The Kalman Dreamer (I)
➡ You have problems… big ones.. However, let’s provide some help…
➡ This is “high level” stuff that will end up Reconstruction/fullrec project

that is currently empty..
➡ It is high level since… it requires that the trackers have already done

their jobs reconstructing hits applying geometry and calibration info..
relative position of detectors is also needed…

– An executable will be prepared in the near future that will take as input the
output of level0 and provide all the info needed for high level actions…

➡ Does this means that nothing can be done for now?
– NOT AT ALL :D !!!!

➡ Let’s try to see what can be done “right now”…..

17

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The Kalman Dreamer (II)
➡ What do I need as input?

– Hits from the trackers / detectors that belong to a
given track/event.

➡ How can I access this info?
– Not that hard: as soon as I call “NextEvent()” all the

level0 actions are executed and I have at my disposal,
in the ROOT memory, what I need. This means that in
RecoTools.cc, event by event, once I have called/
decoded the trackers I can retrieve the info and use it
in my “custom Kalman” code.

➡ The near future: code an action that uses the info
of VT (vertex detector), IT (Inner tracker) and DC
(Drift chamber) and fill a vector of hits associated
to a given “true particle”.

18

http://RecoTools.cc

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The Kalman Dreamer (III)
➡ How it should be done

– Implement the “event
reconstruction” in TAGfoot using the
framework: e.g. TAGactGlbTracking
in TAGfoot

➡ The action
(TAGactGlbTrackingMC) will
need to load the VT, IT, DC classes
(and maybe also the TW and CA
for forward extrapolation)

– Then will have to implement a
“forward tracking” method that loads
the hits and uses them to build a
tracks with Kalman filtering turned
on

– Examples can be found in
GlobalTrack class.

19

FIRST example

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The Kalman Dreamer (IV)
➡ How can you do it if you

are in a hurry
– Inside RecoTools, after

calling NextEvent(), run
the hit association
routine, get a vector of
points from each
detector and pass it to
your favourite Kalman
tool.

– Instead of the “debug
info” add the hits inside a
vector and feed them to
the Kalman tool

20

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The Kalman Dreamer (V)
➡ The Kalman code:

– http://genfit.sourceforge.net/Main.html can be (on request) easily
implemented.

– Any other custom solution is welcomed.

21

http://genfit.sourceforge.net/Main.html

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

2nd interlude: Mag field
➡ The “Sanelli magnets” map is not yet available for now….
➡ There’s an interface class already available:

– MagneticField.* inside TAGfoot. This class loads/provide the FIRST magnetic
field. Still has to be updated in order to handle the FOOT mag field!

– Volunteers? :D

22

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

The real deal..
➡ Beside playing with exercises… As for the “general framework” we have

a lot of real work to do [not in relevance order]:
1. Provide a transparent interface of FOOT geometry setup to the users. Classes

are there, we need to define the detectors RF positions and code what is
needed.

2. Provide an interface to the magnetic field
3. Update the (3D) event display (this can happen ONLY after 1 is accomplished)

➡ Developers
– While it is true that now we’re playing with MC.. bear in mind that at some

point we’re going to have real data for input! So: design the data classes in
order to be as much transparent as possibile in the migration from data to
MC

23

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

Conclusions
➡ Problems with the framework? See the talk at the previous meeting.
➡ Problems with git? Enjoy this tutorial
➡ When adding new stuff to the output, please check carefully your code

for memory leaks.
➡ Before “pushing” to the repository a strategy for the software

management has to be defined and a responsible for the software needs
to be appointed (check for possible conflicts, release only bullet proof
code, coordinate activities on level0 and fullrec projects, etc etc)

➡ Please document the work you are doing in the Twiki page:
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/
FOOTSoftware other pages and links can be added accordingly to the
user will….

24

https://agenda.infn.it/getFile.py/access?contribId=7&resId=0&materialId=slides&confId=11808
https://backlogtool.com/git-guide/en/
http://valgrind.org/docs/manual/quick-start.html
http://valgrind.org/docs/manual/quick-start.html
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

and now… let’s play

25

Exerciseeeeeesssss….. I’m coooooming…..

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

Ex 0: the newcomer
➡ Go to http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/

FOOTSoftware and follow the instruction to:
– Get the code from git.
– Compile the framework.
– Compile DecodeMC in level0

➡ Run the analizer
– ./DecodeMC -in /home/FOOT-T3/battistfoott3/SoftDemo/

FOOT_EMFon.root -out MyDCfanExe.root

➡ Check the output (navigate the root file using a TBrowser)
➡ ….. be happy!

26

http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware
https://www.youtube.com/watch?v=uxo0xvWaKQM

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

Ex 1: the DC fan
➡ Go to http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/

FOOTSoftware and follow the instruction to:
– Get the code from git.
– Compile the framework.
– Compile DecodeMC in level0

➡ Find inside RecoTools.cc the call to TABMactNtuMC and check if the
tupling of the BM info is “turned on”.

➡ Run the analizer
– ./DecodeMC -in /home/FOOT-T3/battistfoott3/SoftDemo/

FOOT_EMFon.root -out MyDCfanExe.root

➡ Then open the framework action in libs/src/TABMbase/
TABMactNtuMC.cxx , do your exe [Slide 11], recompile the
framework, rerun the analizer and….. be happy!

27

http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware
http://RecoTools.cc
https://www.youtube.com/watch?v=uxo0xvWaKQM

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

Ex 2: adding new detector..
➡ .. no … you don’t want to do that…
➡ But, maybe, you want to put your hands on the “latest” added detectors:

– Inner tracker: inherits code from VTX, but only two planes. To be checked
thoroughly….

– Drift chamber: inherits code from BM, to be checked
– TW: dummy. To be coded ~ from scratch.. inherits from SC… missing both

calibration and geometry helper classes… only truth info is coded for now.
– CA: dummy as TW.

➡ So, if you really want to play with “new stuff ”:
– Go in the TATWbase folder, add the info you’d like to browse (eg. momentum

of the particle interacting with scintillator or with calo) to the TAxxntuRaw
class, and then add the tupling to the action TAxxactNtuMC

– Then go into l0reco, rerun the analizer and ….. be happy!

28

https://www.youtube.com/watch?v=uxo0xvWaKQM

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

Ex 3: the truth seeker
➡ Go to the Giuseppe’s slides: https://agenda.infn.it/

conferenceDisplay.py?confId=12219
– Take the course and go to exercise A (slide 31 https://agenda.infn.it/

getFile.py/access?contribId=0&resId=4&materialId=slides&confId=12219)
– Code the exercise inside RecoTools.cc
– rerun the analizer and….. be happy!

➡ Find the void RecoTools::AssociateHitsToParticle() call inside
RecoTools..

– Add the hits of DC and TW (tof wall, or scintillator) to the method and retrieve
the particles that in a given event are firing ALL the 4 detectors (VT, IT, DC
and TW).

– Recompile RecoTools.cc
– rerun the analizer and….. be happy!

29

https://agenda.infn.it/getFile.py/access?contribId=0&resId=4&materialId=slides&confId=12219
https://agenda.infn.it/getFile.py/access?contribId=0&resId=4&materialId=slides&confId=12219
http://RecoTools.cc
https://www.youtube.com/watch?v=uxo0xvWaKQM
http://RecoTools.cc
https://www.youtube.com/watch?v=uxo0xvWaKQM

21/10/16 A. Sarti FOOT software meeting - Bologna 21 oct

Ex 4: the Kalman dreamer
➡ Go to slides 19, 20.
➡ Choose your preferred approach to build a list of hits associated to a

given particle.
➡ Feed the list to whatever algorithm you have/want to test….. and…..

be happy!
➡ Of course the last one is the hard part of the game. We do not provide

yet an interface to a Kalman filtering code. But we can provide anything
you want : just ask it…

– Then, of course, the Kalman code will require as input the magnet field and the
geometry… We need to sit down and understand the best way to provide this
info within the framework….

30

https://www.youtube.com/watch?v=uxo0xvWaKQM

