
The	ROOT	file	of	Simula0on	Output:	
a	short	How-To	

Milano	&	Roma	1	

Introduc2on	
This	(very)	short	tutorial	 is	meant	to	explain	how	to	
use	 the	 MC	 data	 output	 produced	 for	 FOOT.	 The	
main	topics	are:		
•  The	structure	of	the	root	data	produced	by	MC	
•  A	skeleton	code/macro	to	perform	a	minimal	analysis	
on	MC	data:	AnaFOOT.h,	AnaFOOT.cpp	(more	
professional	and	complete	code	to	be	developed	
within	the	general	framework	so7ware)	

•  Give	some	basic	 infos	specific	of	MC		
simula2on	(FLUKA)	that	everybody	needs	to	know	

The	setup	in	simula2on	
(at	this	2me)	

Beam	
Monitor	

Start	
Counter	

Target	

2°	DriA	
Chamber	

Scin0llator	

BGO	Calorimeter	

Silicon		
Trackers	

Magnets	

Warning:		
At	this	0me	we	have	not	yet	
included	the	ECC	setup	
which	however	is	ready	

The	setup	in	simula2on	
(at	this	2me)	

Beam	
Monitor	

Start	
Counter	

Target	

DriA	
Chamber	

Scin0llator	

BGO	Calorimeter	Silicon		
Trackers	

Magnets	

The	B-field	map	for	tracking		
Plot #1

-4 -2 0 2 4

x (cm)

-4

-2

 0

 2

 4

y
 (

c
m

)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

B
 [

T
]

Plot #1

 0 5 10 15 20 25 30

x (cm)

-4

-2

 0

 2

 4

y
(c

m
)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

B
 [

T]

Example	of	one	interes2ng	fragmenta2on	
event	in	the	target		

ECC	simula2on	

Separate	setup	
Output	to	be	defined...	
Not	considered	today	

Building our taylored MC Output
We have configured some user routines of FLUKA to produce an
“ad hoc” event-by-event output written as an ASCII file (*TXT.dat)

Those ASCII files contain information about all the particles and
interaction simulated. A simple and portable code reads these
txt’s and outputs ROOT files

Tree
Branches

Output from
MC: Txt file

ROOT file
with Tree structure

The	first	goal	of	this	mee0ng	is	to	start	to	get	familiar	with	the	Tree	structure	of	our	
output.	A	simple	macro	will	be	used	to	perform	some	exercises	
	
The	second	goal	is	to	allow	people	to	start	working	seriously	on	event	reconstruc0on	
by	means	of	the	proposed	framework	soAware	for	both	real	and	simulated	data	

1st	Step	 2nd	Step	

Example	prepared	for	this	mee2ng	

Root	file:	FOOT_EMFon*.root	
500K	events	of	16O	on	C2H4	target	
(only	events	with	inelas:c	interac:on	in	the	
target	where	wri;en	on	output,	for	
compactness)	

Simple	macro	for	root:	AnaFOOT	(compiled)	

	A	few	things	specific	of	FLUKA	MC	that	are	useful	
to	know	

Default	units		
the	most	important	are:	
2me➞	s,	length	➞	cm,	energy	➞	GeV,	
masses	➞	GeV/c2		

Par2cles:		
each	par2cle	is	iden2fied	by	a	number	

Reference	frame:	(cartesian,	right-handed)	
z	is	primary	beam	direc2on	
y	is	poin2ng	upwards	

z	

y	

x	

FLUKA		
name	

FLUKA		
number	

PDG		
								correspondence	

Manual	can	also	be	accessed	within	Flair:	press	F1	

Since	we	are	mostly	interested	to	nuclear	
fragments,	no2ce	that:	

for	p,	n,	d,	t,3He,	4He	there	is	a	specific	FLUKA		par2cle	number	
	
For	A>4:	FLUKA	par2cle	numbers	is	always	-2,	and	nucleus	is	
iden2fied	by	Z	and	A	
	
Fragments	and	nucleons	origina2ng	in	the	“nuclear	evapora2on”	
phase	are	iden2fied	with	par2cle	number	in	the	range	from	-30	to	-7.	
Again	iden2fied	by	Z	and	A.	
	
there	would	be	also	a	way	to	iden:fy	isomers,	but	we	can	omit	this	
now	

The	concept	of	Region	

FLUKA makes use of “Combinatorial Geometry” (originally
from Oak Ridge and later extended/modified)
Basic objects called bodies (such as cylinders, spheres,
parallelepipeds, etc.) are combined to form more complex
objects called Regions

1 complex object = REGION
•  internally identified by a

number
•  to each region is assigned

a single Material
(chemical element or
compound or mixture)

3 basic
objects 	

Example	
“Air”	is	one	region,	filled	with	air	(N,	O,	Ar	@	STP)	

“Target”	is	another	region,	
filled	with	C2H4	

each	“Tracker”	plane	is	a	different	region,		
for	the	moment	just	filled	with	Si	

unless	differently	specified,	the	default	isotopic	abundance	of	a	given	element	is	the	
natural	one	

Region	numbering	in	(present)	FOOT	simula2on	
Region	n.												2	:	AIR																				 	 	 	Air	all	around				
Region	n.												3	:	TARGET															 	 	 	Target	
Region	n.												4	:	STARTC																 	 	 	Start	Counter	
Region	n.													5	:	VTX1 		 		
Region	n.													6	:	VTX2																							 	 	 	The	3	planes	of	vertex		silicon	tracker	
Region	n.													7	:	VTX3	
Region	n.													8	:	VTX4	
Region	n.													9	:	VTX5	
Region	n							10-13:									 	 	 	Parts	of	magnet	bodies	
Region	n.											14	:	MagAir 	 	 	 	A	special	part	of	air:	where	there	is	B-field	
Region	n.					15-32	:	vpncma 	 	 	Beam	Monitor	Y	Cells	
Region	n.					33-50	:	upncma 	 	 	Beam	Monitor	X	Cells	
Region	n.					51-55	:	 	 	 	External	mech.	of	Beam	Monitor	
Region	n.					56-91	:	vpncmb 		 	2nd	DriA	Ch.	Y	Cells	
Region	n.			92-127	:	upncmb 		 	2nd	DriA	Ch.	X	Cells	
Region	n.	128-132	:	 	 	 	External	mech.	of	2nd	Dri7	Ch.	
Region	n.	133-253	:	SCINnnmm	 	 	 	Scin0llator	0les	(11x11)	
Region	n.	254-374	:	CALOnnmm	 	 	 	Calorimeter	crystals	(11x11)	

The	2	planes	of	intermediate		silicon	tracker	

The	root	data	by	FLUKA	
The	data	are	stored	in	a	root	file	with	several	block	in	
the	structure	EVENTO_STRUCTPIX	 (defined	 in	the	file	
EventStructPix.h):	
•  The	par2cle	block:	kinema2cs	informa2on	of	the	
produced	par2cles	

•  The	detector	block:	informa2on	about	the	detector	
outputs	of	the	event	and	namely	about	energy	
releases	and	hits	+	links	to	“MC	truth”.	

•  The	crossing	block:	informa2oon	about	the	
par2cle	that	cross	different	regions	of	the	setup	
(both	inac2ve	and	ac2ve)	

The particle structure
Int_t EventNumber;
Int_t trm;
Int_t trpaid[MAXNUMP];
Int_t trgen[MAXNUMP];
Int_t trcha[MAXNUMP];
Int_t trreg[MAXNUMP];
Int_t trbar[MAXNUMP];
Int_t idead[MAXNUMP];
Int_t trfid[MAXNUMP];
Double_t trix[MAXNUMP];
Double_t triyi[MAXNUMP];
Double_t triz[MAXNUMP];
Double_t trfx[MAXNUMP];
Double_t trfy[MAXNUMP];
Double_t trfz[MAXNUMP];
Double_t tripx[MAXNUMP];
Double_t tripy[MAXNUMP];
Double_t tripz[MAXNUMP];
Double_t trfpx[MAXNUMP];
Double_t trfpy[MAXNUMP];
Double_t trfpz[MAXNUMP];
Double_t trmass[MAXNUMP];
Double_t trtime

[MAXNUMP];
Double_t tof[MAXNUMP];
Double_t trlen[MAXNUMP];

for each of the produced particles we register the info in
arrays: i.e. trmass[2] is the mass of the 3rd produced particle

EventNumber = FLUKA event number:
trn= number of particles produced: max equal to

MAXNUMP = 1000
trpaid = index in the part common of the particle parent
trcha = charge
trbar = barionic number
trfid = FLUKA code for the particle (es: photon, jpa=7)
trgen = generation number

trix, triy, triz = production position of the particle
trfx, trfy, trfz = final position of the particle
tripx,tripy,tripz = production momentum of the particle
trifx,trfpy,trfpz = final momentum of the particle
trmass = particle mass
trtime = production time of the particle
trlen = track lenght of the particle

The individual detectors structures

DETn = number of energy release in the detector DET
DETid = position of the particle responsible of the release

in the particle block
DETinx, DETiny, DETinz = inizial position of energy release

For each detector with n energy releases the info are
stored in arrays (x, p, De, time, etc...) with the i-th
component related to the i-th release . Same syntax for all
scint detector: "info""NAMEDETECTOR”[index of the
release]

DEToutx, DETouty, DEToutz = final position ” “
DETnpx, DETinpy, DETinpz = inizial momentum “ ”
DEToutpx, DEToutpy, DEToutpz = final momentum “ “
DETde = energy release
DET = quenched energy release
DETtime = initial time of the energy release

Start	Counter:	st	

Int_t stn;
Int_t stid[MAXSC];
Double_t stinx[MAXSC];
Double_t stiny[MAXSC];
Double_t stinz[MAXSC];
Double_t stoutx[MAXSC];
Double_t stouty[MAXSC];
Double_t stoutz[MAXSC];
Double_t stinpx[MAXSC];
Double_t stinpy[MAXSC];
Double_t stinpz[MAXSC];
Double_t stoutpx[MAXSC];
Double_t stoutpy[MAXSC];
Double_t stoutpz[MAXSC];
Double_t stde[MAXSC];
Double_t stal[MAXSC];
Double_t sttim[MAXSC];

MAXSC = 500

Simple	case	of		
non-segmented	
detector	

Vertex	tracker:	vtx	 This	is	instead	a	segmented	(=pixelated)	detector	
Addi0onal	variables	are	needed	

		Int_t	nvtx;	
		Int_t	idvtx[MAXVTX];	
		Int_t	iplavtx[MAXVTX];	
		Int_t	irowvtx[MAXVTX];	
		Int_t	icolvtx[MAXVTX];	
		Double_t	xinvtx[MAXVTX];	
		Double_t	yinvtx[MAXVTX];	
		Double_t	zinvtx[MAXVTX];	
		Double_t	xoutvtx[MAXVTX];	
		Double_t	youtvtx[MAXVTX];	
		Double_t	zoutvtx[MAXVTX];	
		Double_t	pxinvtx[MAXVTX];	
		Double_t	pyinvtx[MAXVTX];	
		Double_t	pzinvtx[MAXVTX];	
		Double_t	pxoutvtx[MAXVTX];	
		Double_t	pyoutvtx[MAXVTX];	
		Double_t	pzoutvtx[MAXVTX];	
		Double_t	devtx[MAXVTX];	
		Double_t	alvtx[MAXVTX];	
		Double_t	2mvtx[MAXVTX];	MAXVTX	=	500	

Plane	

Row		(in	a	given	plane)	

Column	(in	a	given	plane)	

Iden0fy	
the	pixel	

Inner	tracker:	IT	

beam	monitor	(1st	drin	ch.):		
mon	

Int_t	nmon;	...	MAXBM	=	500	
Int_t	ilayer[MAXBM];			➞	layer	#	
Int_t	icell[MAXBM];	➞	cell	#	
Int_t	iview[MAXBM];	➞	view	(0:x	1:y)	

2nd	drin	ch.:	2dc	 	Int_t	n2dc;	...	MAX2DC	=	500	
Int_t	ipla2dc[MAX2DC];	
	Int_t	icell2dc[MAX2DC];	
	Int_t	iview2dc[MAX2DC];	

scin2llator:	scint	 	Int_t	nscint;	...	MAXSCINT	=	1000	
	Int_t		Int_t	irowscint[MAXSCINT];	
	Int_t		icolscint[MAXSCINT];	

crystal	calorimeter:	cry	 	Int_t	ncry;	...		MAXCRY	=	2000	
	Int_t	irowcry[MAXCRY];	
	Int_t	icolcry[MAXCRY];	

Int_t	nIT;	...	MAXIT	=	500	
Int_t	iplaIT[MAXIT];	
Int_t	irowIT[MAXIT];	
Int_t	icolIT[MAXIT];	

Energy	releases	and	hits	connec2on	to	par2cles	
To	find	which	par2cle	released	the	energy	of	a	detector	energy	
release	we	need	to	build	a	pointer	to	the	par2cle	block.	Given	the	
j---th	energy	release	in	the	detector	DET,	then	we	build:	

pointer=	DETid[j]---1;	

Then	the	features	of	the	par2cles	responsible	of	the	release	(for	
example	the	mass	and	the	x	coord		of	produc2on)	can	be	retrieved	
from	the	par2cle	block	as:	

Massa	=	trmass[pointer];		
Xprod	=	trix[pointer];	

DET	

DETn	=	2	

DETn	=	1	

DETinx(1),	DETiny(1),	DETinz(1)	
DEToux(1),	DETouy(1),	DEToutz(1)	

DETde(1)	=	Sum	of	energy	releases	by	that	“par0cle”	
in	DET	

DETid(1)-1	=	pointer	to	the	par0cle	in	Par0cle	Structure	that	originated	hit=1	
to	access	all	infos	(id,	quantum	numbers	+	kinema0cs)	about	that	par0cle			

DETinx(2),	DETiny(2),	DETinz(2)	 DEToutx(2),	DETouty(2),	DEToutx(2)	

DETde(2)	=	Sum	of	energy	releases	by	that	“par0cle”	
in	DET	

DETid(2)-1	=	pointer	to	the	par0cle	in	Par0cle	Structure	that	originated	hit=2	
to	access	all	infos	(id,	quantum	numbers	+	kinema0cs)	about	that	par0cle			

The crossing data structure

Int_t ncross;
Int_t idcross[MAXCROSS];
Int_t nregcross[MAXCROSS];
Int_t nregoldcross[MAXCROSS];
Double_t xcross[MAXCROSS];
Double_t ycross[MAXCROSS];
Double_t zcross[MAXCROSS];
Double_t pxcross[MAXCROSS];
Double_t pycross[MAXCROSS];
Double_t pzcross[MAXCROSS];
Double_t mcross[MAXCROSS];
Double_t chcross[MAXCROSS];
Double_t tcross[MAXCROSS];

MAXCROSS = 10000

ncross = number of boundary crossing
idcross = position of the crossing particle in the particle block
nregcross = no. of region in which the particle is entering
nregoldcross = np. of region the particle is leaving
pxcross, pycross, pzcross = momentum at the boundary
crossing
xcross, ycross, zcross = position of the boundary crossing
tcross = time of the boundary crossing
chcross = charge of crossing particle
macross = mass of the crossing particle

This structure registers the info on the particles that cross the boundaries between the
different regions of the setup (detector elements, air, target). At each crossing the info
are stored in arrays

The	simple	code	AnaFOOT	
The code reads the root data from MC and produces some example histos.
It’s thought as an example/skeleton for more complex code specific to
different analysis.
Compiling & Linking: make –f Makefile_AnaFlukaHIT (clean)
Usage: can be seen typing “AnaFOOT –help” :
> AnaFOOT [opKons] with possible opKons
- nev value : [def=all] Numbers of events to process
- in file : [def=In.root] Root input file generated by FLUKA
- out file : [def=Out.root] Root output file with analysis histo
- iL : [def=none] input file is a list of files
- deb value : [def=0] Enables debugging

N.B	To	process	mul2ple	files	make	a	list	of	files	to	be	process	in	a	list	file	(ex:	lista.txt)	
and	give	the	command:	
./AnaFOOT	–iL	–in	lista.txt	–out	TotAnaFile.root	

		EVENTOPIX_STRUCT	*pevstr	=	new	EVENTOPIX_STRUCT;	
		TFile	*f_out	=	new	TFile(Outname,"RECREATE");	
	
		status	=	Booking(f_out);	
	
		TFile	*f_input	=	new	TFile(Inname);	
			
		f_input->cd();	
		f_input->GetObject("EventTree",ptree);	
		EventoPix	*Ev	=	new	EventoPix();	
		status	=	Ev->FindBranches(ptree,pevstr);	
				

Pointer	to	structure	

Opens	output	root	file	

Books	histograms.	
Booking	is	the	rou2ne	where	you	have	to		
book	your	custom	histos	

Loads	root	tree	with	MC	output	

Let’s	look	a	litle	bit	inside	AnaFOOT.cpp	

Just	to	be	ready	to	make	some	simple	exercise	today...	

		int	currentev	=	0;	
	
		for	(int	kk=EvStart;	kk<EvStart+Nproc;	kk++){				
				if(kk%1000==0){	cout<<"Processed	event	=	"<<kk<<endl;}	
	
				status	=	Ev->Clean();	
	
				currentev	=	ptree->GetEvent(kk);	
	
				status	=	Vertex(pevstr);		
				status	=	Calo(pevstr);	
				status	=	Crossings(pevstr);	
		}		
		//	End	of	event	loop	
			
	
	
	f_out->Write();	
	f_out->Close();	//	Delete	also	histos	and	trees	
	
	return	0;	

Start	event	loop	

Gets	event	in	tree	

invokes	some	rou2nes	which	have	been	
prepared	to	show	examples	about	
manipula2ng	variables	in	Vertex,	
Calorimeter	and	Crossing	structures	

writes	and	closes		
output	files	containing	custom	histos	

customized	code:	Example	A	

I	want	to	retrieve	the	code	and	the	mass	of	the	par2cle	that	release	energy	in	the	
start	counter.	
A	 par2cle	 may	 generate	 more	 than	 a	 single	 release	 in	 the	 detector	 (see	 the	
drawing):	 it’s	 a	 good	 idea	 to	 consider	 the	 first	 energy	 release	 to	 retrieve	 the	
features	of	the	impinging	par2cle.		

Proton	

First	proton	
release	

second	proton	
release	

Delta	electron	
release	

double		massa;	
int	ipart_pointer,	kpart_type;		
If	((pevstr--->			stn)>0){	

ipart_pointer	=	pevstr->s0d[0]-1;	
	massa	=	pevstr--->trmass[ipart_pointer];		

								kpart_type	=	pevstr->trfid	[ipart_pointer];	
}	

Example	B	
I	want	to	know	how	many	neutrons	arriving	at	calorimeter	have	been	
generated	inside	the	target	
int	neutron_from_target=0;	
int	neutron_code	=	8;	
int	target_region	=	3;	
int	first_cry_region	=	254;	
int	last_cry_region	=	354;	
Int	ipart_pointer;	
for(int	ii=0;	ii<pevstr--->ncross);	ii++){	
									if(pevstr--->nregcross[ii]>=first_cry_region	&&	

	 	pevstr--->nregcross[ii]<=last_cry_region)	{	
																											ipart_pointer	=	pevstr--->idcross[ii]---1;	

									if	((pevstr--->trreg[ipart_pointer]==target_region)	&&		
											(pevstr--->trfid[ipart_pointer]==neutron_code)	{	
																neutron_from_target++;	
							}	

}	
}	

loops	on	all	the	crossings	entering		
a	crystal	and	cheks	if	pointer	in	
particle	block	is	coming	from	
target	and	if	is	a	neutron	

