

# The <sup>7</sup>Be(n, p) cross section and the Cosmological Lithium Problem: the measurement in EAR2@n\_TOF

Lucia Anna Damone, Nicola Colonna, Massimo Barbagallo, Mario Mastromarco, Sergio Lo Meo

email: lucia.damone@ba.infn.it

Meeting n\_TOF Italia, LNL 20 Ottobre 2016





- Physics case: The Cosmological Lithium problem
- experimental set-up for the <sup>7</sup>Be(n, p) measurement
- Geant4 Simulations
- Preliminary results of the <sup>7</sup>Be(n, p) measurement
  - Conclusions



A serious discrepancy between the predicted abundance of <sup>7</sup>Li and value inferred by measurements (Spite et al.)

Approximately 95% of primordial <sup>7</sup>Li is produced from the electron capture decay of <sup>7</sup>Be ( $T_{1/2}=53.2 \text{ d}$ ).

<sup>7</sup>Be is destroyed via (n,p) and (p,x), (d,x), (<sup>3</sup>He,x), ... reactions. Small contribution of the (n, $\alpha$ ) reaction.





M. Barbagallo n\_TOF Italia Meeting, October 2016, LNL



<sup>7</sup>Be(n,p) cross-section measurement





## Sample preparation (PSI)

200 GBq have been extracted from water cooling of SINQ spallation source at PSI and later inserted in the form of  ${}^{7}\text{Be}(\text{NO}_{3})_{2}$  colloid in the ISOLDE Ion Source ("Isolde oven").





CNMO M11 type A container used for the shipment from PSI to CERN.

Additional 2.5 cm Pb shielding needed.



Mass separation at the GLM beamline.

Current injection to heat up the oven, lasers (RILIS) to ionize the <sup>7</sup>Be (and <sup>7</sup>Li).

<sup>7</sup>Be ions, accelerated up to 30 keV and separated by means of a magnetic dipole, have been implanted on an Aluminum backing 20  $\mu$ m thick placed in high vacuum collection chamber.



Average depth of implantation: 150 nm



## Sample preparation and measurement







#### April-June 2016

- Alignment (Gafchromic)
- LiF reference measurement
- (2x) <sup>7</sup>Be implanted samples
- Al Dummy



#### Sample preparation and measurement







#### April-June 2016

- Alignment (Gafchromic)
- LiF reference measurement
- (2x) <sup>7</sup>Be implanted samples
- Al Dummy



# Set-Up



 $n + {}^{6}Li \rightarrow \alpha + t$ 







## **Coincidence LiF**

LiF



$$n + {}^{6}Li \rightarrow \alpha + t$$
  
 $Q = 4.78 \text{ MeV}$ 

Coincidence window = 100 ns



# Set-Up



$$n + {}^{7}Be \rightarrow p + {}^{6}Li$$





Radius

2.5 mm

<sup>7</sup>Be



$$n + {^7Be} \rightarrow p + {^7Li}$$
  
 $Q = 1.644 \text{ MeV} (\sim 95\%)$ 



# **Geant4 Simulations**





#### **Geant4 Simulations**



#### Very good agreement!



## **Preliminary results**



Factor 1.41 lower



# normalizing the cross section of ${}^{6}Li$ at thermal energy...



## **Preliminary results**





# Conclusions

We'll try to find a better agreement between ENDF  $\,^6\text{Li}(n,t)lpha$  cross section and

our data in order to correctly evaluate the  $^{7}Be(n, p)$   $^{6}Li$  cross section.

# THANK YOU FOR YOUR KIND ATTENTION

L. Damone, Meeting n\_TOF Italia, LNL 20 Ottobre 2016