

High accuracy measurement of the ²³⁵U(n,f) reaction cross-section in the 10-30 keV neutron energy range in EAR1@n_TOF

M. Barbagallo, S. Amaducci, M. Mastromarco, L. Cosentino, N. Colonna, P. Finocchiaro

• ²³⁵U(n,f) cross-section is often (*i.e. nearly always*) used as a reference in cross-section measurements of major and minor actinides.

- ²³⁵U(n,f) based detectors are widely used to measure neutron fluxes (MACS..).
- 235 U(n,f) cross section in the energy range proposed can have a significant impact on fast critical reactor and sub-critical ADS.

The **n_TOF Phase-2 neutron flux** was accurately determined using **5 different detectors** and **3 different converting reactions.**

- The analysis of the neutron flux has revealed a discrepancy between results based on ${}^{235}U(n,f)$ cross section and results based on ${}^{6}Li(n,t)\alpha$ and ${}^{10}B(n,\alpha){}^{7}Li$, regardless of the detection system used (*).
- Also the comparison with the simulations shows such a discrepancy in the range 10-30 keV.

6-8% overestimation of the fission cross-section of ²³⁵U in database?

²³⁵U(n,f) cross section not standard in that energy region, but declared known with <1% uncertainty (**)</p>

Evaluations in general are in agreement, although **"resonance-like" structures** are reported only in ENDF/B-VII.1 library.

Evaluations in general are in agreement, although **"resonance-like" structures** are reported only in ENDF/B-VII.1 library.

Only in this region, the uncertainties have been increased by a **factor 4** in the latest release of ENDF/B-VII data library.

Status of evaluations and experimental data

INFN

TOF

 $^{235}U(n,\gamma)$ cross section was "recently" measured at Los Alamos relative to $^{235}U(n,f)$ using DANCE+PPAC

The 10% difference attributed to ${}^{235}U(n,\gamma)$ cross section could rather be explained by the overestimation of the **fission cross section**, consistent with our finding.

We measured (Aug-Sept 2016) in **EAR1** the ${}^{235}U(n,f)$ cross section together with the reference reactions ${}^{6}Li(n,t)$ and ${}^{10}B(n,\alpha)$.

- Detection at forward and backward directions
- Energy resolution

Silicon detectors stack $(5x5 \text{ cm}^2 \text{ and } 200)$

 $\mu m \ thickness)$ in the beam (capture collimator)

EAR1@n_TOF

- + 500 $\mu g/cm^2$ $\,^{6}\text{LiF}$, 50 $\,\mu m$ Al backing
- 80 nm ¹⁰BC₄ , 18 μm Al backing
- 275 μg/cm² 235U , 250 μm AI backing

(Laboratori Nazionali del Sud)

(ESS, Linkoping- Chewbacca)

(Institute for Reference Materials and Measurement)

The setup

The setup

Lin/Log Mesytech preamp*

SiMon

*Same setup in different areas \rightarrow ~ same response

Calculated transmission factor

Amplitude spectra

SIFI 1

Forward direction

M. Barbagallo and S. Amaducci, n_TOF-Italia meeting, October 20th 2016

M. Barbagallo and S. Amaducci, n_TOF-Italia meeting, October 20th 2016

SIFI 1 / SIFI 2

SIFI 3

Forward direction

M. Barbagallo and S. Amaducci, n_TOF-Italia meeting, October 20th 2016

SIFI 3 / SIFI 4

M. Barbagallo and S. Amaducci, n_TOF-Italia meeting, October 20th 2016

SIFI 5

SIFI 6

SIFI 5 / SIFI 6

Study of pulse height defect in the silicons

LOHENGRIN recoil mass spectrometer for fission products @ ILL-Grenoble

silicon

Features	
flux at target position	5.3·10 ¹⁴ n cm ⁻² s ⁻¹
solid angle W	≤ 3.2 10 ⁻⁵ sr
total length of main path	23 m
mass dispersion for 1 % mass difference	3.24 cm
energy dispersion for 1 % energy difference	⁷ 7.2 cm
mass resolution A/dA	400 for target size 0.8 x 7.5 cm ²
(FWHM)	1500 for target size 0.16 x 4 cm^2
ionization chamber	
energy resolution	$E/\Delta E > 100$
nuclear charge resolution	$Z/\Delta Z \le 36$

Study of pulse height defect in the silicons

LOHENGRIN recoil mass spectrometer for fission products @ ILL-Grenoble

silicon

- Refine Time of flight to Energy conversion
- Refine cuts applied
- Increase statistic
- Extract the ratios of the standards