Magnetron sputtering for corrosion protection of liquid cyclotron target for Fluorine-18 production

Hanna Skliarova,

S. Cisternino, O. Azzolini, R. R. Johnson, V. Palmieri

R&D of thin film deposition techniques

in order to provide:

"... a chemical passive surface of targets for radioisotope production ..."

Best Cyclotron Systems, Inc.

Hanna Skliarova

Particularly, the [¹⁸O]H₂O target for production of [¹⁸F⁻]

Hanna Skliarova

Radioactive Sugar

FDG is the most used radioisotope in PET

Proton irradiation cause water radiolysis

$H_2O \rightarrow H_2, O_2, H_2O_2, OH, H, e_{aq}, HO_2, O_2^-, HO_2^-, OH^-, H^+, ...$

Proton irradiated water is extremely corrosive!

Hanna Skliarova

Entrance beam window:

high tensile strength substrate e.g. Havar[®] (Co, Cr, Fe, Ni, W, Mo, Mn, C)

Havar[®] foil corroded on beam spot

Hanna Skliarova

Need of corrosion resistant top-coating onto the **Havar® beam window**

Candidates: Nb, Ta, Pt, Zr...

Hanna Skliarova

Chemical inertness is mandatory, but not enough

Hanna Skliarova

01/10/2017

8

Microstructure has a great influence

on corrosion process

Hanna Skliarova

Microstructure requirements:

Coating must be dense with minimal distance between grain boundaries

The best possible Diffusion Barriers are Amorphous!

Hanna Skliarova

01/10/2017

10

- **Requirement from** *BEST Cyclotron Systems Inc.*:
 - > Uniform thickness

- INFN Suggestions:
 - > Absence of pin-holes
 - > Low porosity
 - > Low diffusion across grain boundaries

Hanna Skliarova

Deposition method:

Sputtering is a method to deposit

thin film onto a surface (substrate)

Hanna Skliarova

Sputtering

Hanna Skliarova

Magnetron sputtering

Our sputtering facility:

Laboratories for Surface and Material Treatments in Nuclear Physics

Substrate holders

• grounded

water-cooled

Hanna Skliarova

Analyzing technique

Acid porosity test:

Hanna Skliarova

Analyzing technique

Acid porosity test: 10% HCl, 30°C, 10 min

Hanna Skliarova

Analyzing technique: SEM, FIB SEM

Hanna Skliarova

<u>Analyzing technique</u> X-ray diffractometry

20

Coating systems investigated:

Hanna Skliarova

Parameters investigated for Nb coatings:

substrate temperature

• -100°C ÷ 500°C

applied bias

• -150 V \div +80 V

sputtering gas pressure

• 3.10⁻³ mbar ÷ 3.10⁻² mbar

deposition rate

• 0.5 nm/sec ÷ 5 nm/sec

Niobium-based sputtered thin films for Corrosion Protection of proton-irradiated liquid water targets for [¹⁸F] production, H. Skliarova, O. Azzolini, O. Dousset, R. R. Johnson, V. Palmieri, *Journal of Physics D Applied Physics* 08/2013; 47(4).

Hanna Skliarova

Temperature influence:

Hanna Skliarova

Best Nb deposition recipe:

Hanna Skliarova

01/10/2017

 $\mathbf{24}$

DC-biased MS of Nb:

Hanna Skliarova

Istituto Nazionale di Fisica Nucleare

Reactive sputtering of Nb₂O₅ :

Sputtering gas pressure

• 8-10⁻³ mbar ÷ 7-10⁻² mbar

Stoichiometry: Ar/O₂

• Ar/O₂

Applied bias

• $-80 V \div 0 V$

Niobium-based sputtered thin films for Corrosion Protection of proton-irradiated liquid water targets for [¹⁸F] production, H. Skliarova, O. Azzolini, O. Dousset, R. R. Johnson, V. Palmieri, *Journal of Physics D Applied Physics* 08/2013; 47(4).

Hanna Skliarova

Amorphous Nb₂O₅ deposition recipe:

Hanna Skliarova

<u>Amorphous Nb₂O₅:</u>

Hanna Skliarova

Multilayer Nb/Nb₂O₅ coatings

combine:

high ductility of Nb with

excellent barrier properties of Nb₂O₅

Hanna Skliarova

Best Nb/Nb₂O₅ multilayer recipe:

60 nm double-layer coatings showed high corrosion resistance

Niobium-niobium oxide multilayered coatings for corrosion protection of protonirradiated liquid water targets for [¹⁸F] production, H. Skliarova, M. Renzelli, O. Azzolini, D. de Felicis, E. Bemporad, Ri R. Johnson, V. Palmieri, *Thin Solid Films* 03/2015; 42.

Hanna Skliarova

<u>Thin Nb/Nb₂O₅ multilayer:</u>

FIB SEM

FIB SEM

Hanna Skliarova

Nb-Ta, Nb-Zr and Ta-Zr

were co-deposited in different ratios in

order to find amorphous metallic coating

Hanna Skliarova

01/10/2017

32

Sample-holder for co-deposition

Hanna Skliarova

Istituto Nazionale di Fisica Nucleare

Nb-Ta, Nb-Zr systems

were resulting only in crystalline columnar structures

Co-sputtered amorphous Nb–Ta, Nb–Zr and Ta–Zr coatings for corrosion protection of cyclotron targets for [¹⁸ F] production, H. Skliarova, O. Azzolini, R. R. Johnson, V. Palmieri, *Journal of Alloys and Compounds* 08/2015; 639:488-495.

Hanna Skliarova

01/10/2017

34

Sample-holder for co-deposition

Laboratori Nazionali di Legnaro

Not sputtered Havar® substrate

End Anti-

Havar[®] sputtered with Ta-Zr

		· 174					USP -
SEM HV: 20.0 kV	WD: 17.48 mm		VEGA3 TESCAN	SEM HV: 20.0 kV	WD: 15.06 mm		VEGA3 TESCA
SEM MAG: 532 x	Det: SE	100 μm		SEM MAG: 532 x	Det: SE	100 μm	1 Cal
	2 m			K			all.
() -)	No the						A SA
				SEM HV- 20.0 kV	WD: 15.08 mm		VEGA3 TESCA
SEM HV: 20.0 KV	WD: 17.50 mm	20 um	VEGA3 TESCAN	SEM MAG: 2.61 kx	Det: SE	20 um	VEGAS TESCA

Recipes used for beam window coating:

DC-biased sputtering of Nb

Reactive sputtering of amorphous Nb₂O₅

Nb/Nb₂O₅ thin multilayers

Amorphous Ta-Zr

Istituto Nazionale di Fisica Nucleare

Hanna Skliarova

Thank you for your attention!