b UNIVERSITÄT BERN

Multi-disciplinary research activities and beam diagnostic detector developments at the Bern medical cyclotron

Saverio Braccini

Albert Einstein Center for Fundamental Physics Laboratory for High Energy Physics University of Bern

Outline

b UNIVERSITÄT BERN

- > Medical cyclotrons and their potential for research
- > Bern cyclotron laboratory: production and research "under the same roof"
- > GMP radiopharmaceutical industrial production (highlights)
- > Some on-going research activities:
 - Particle detectors for beam monitoring
 - Methods for accelerator physics
 - Radiation hardness
 - Theragnostic radioisotopes
- Conclusions and outlook

Compact medical cyclotrons

D UNIVERSITÄT BERN

Manufacturer	Model	Particles	Energy (MeV)	Max. Beam Current (µA)	Source	Extracted Beams
ACSI	TR19	$H^{-}(D^{-})$	14-19 (9)	>300 (100)	Ext. Cusp	2
ACSI	TR24	H^{-}	15-24	>300	Ext. Cusp	2
Best	15p	H-	15	400	Ext. Cusp	2
Best	25p	H^{-}	25	400	Ext. Cusp	2
GE	PETtrace	${\rm H}^{-}$ / ${\rm D}^{-}$	16.5 / 8.4	>80/60	Int. PIG	6
IBA	Cyclone 18/9	$H^{-}(D^{-})$	18 (9)	>100 (65)	Int. PIG	8
IBA	KIUBE	H^{-}	18	200	Int. PIG adjustable	8
Sumitomo	HM-18	H- / D-	18 (10)	>90 / 50	Int. PIG	2

- Commercial accelerators (> 300 in operation)
- > PET radioisotope production (almost only) during the night
- > Available beam time for research and training
- Complementary with respect to large infrastructures

Bern medical cyclotron: operational since may 2013

b UNIVERSITÄT BERN

Ľ

ECPM- INFN-LNL - 22.09.2017 - SB

The cyclotron and the Beam Transport Line (BTL)

^b UNIVERSITÄT BERN

7]

- IBA 18 MeV "twin" (two H⁻ ion sources) high current (150 mA) cyclotron
- > 8 out ports (4 ¹⁸F liquid targets, BTL, solid target, ¹⁵O gas target, 1 spare)
- Beam line + separate bunker (UniBern): production and research in parallel

The hot labs

b UNIVERSITÄT BERN

U

- > 2 GMP production labs (FDG, ¹⁸F compounds) + future developments
- <u>1 multi-function research lab (UniBern)</u>

ECPM- INFN-LNL - 22.09.2017 - SB

> Summary 2016:

>

>

>

- 324 cyclotron production runs (single and dual beam)
- 132 TBq (EOB) of ¹⁸F produced

F-Choline: started in October 2016

- Mostly FDG (F-Choline: 1 or 2 runs per week)
- No major radiation protection or other issues
- Cyclotron efficiency: >99%

FDG: started in May 2013

GMP radiopharmaceutical production

Industrial production by SWAN Isotopen AG

UNIVERSITÄT BERN

UniBEaM

^b UNIVERSITÄT BERN

> 1D beam profiler based on (doped) optical fibres passed through the beam
> On-line, minimal interference with the beam

S. Braccini et al., 2012 JINST 7 T02001

On-line monitoring with UniBEaM

b UNIVERSITÄT BERN

b

 \boldsymbol{u}^{\prime}

UniBEaM commercialized by D-Pace

UNIVERSITÄT BERN

11

UniBEaM25-S – Single Axis Probe

UniBEaM25-D – Dual Axis Probe

UniBEaM was conceived by the AEC-LHEP of the University of Bern¹ and commercialized by D-Pace.

2D non-destructive beam monitoring: π^2

b UNIVERSITÄT BERN

 u^{\flat}

First preliminary results

b UNIVERSITÄT BERN

h

On-line measurement of the transverse beam emittance

 4 PrOB ε aM

- > Poorly known (or unknown!) for compact medical cyclotrons
- > Crucial for reliable simulations (ex. of the BTL)
- > Method based on 4 UniBEaM detectors
- > Good agreement with quadrupole variation method

INIVERSITÄT

K. Nesteruk , PhD thesis, 2017; K. Nesteruk et al., arXiv:1705.07486, 2017.

ECPM- INFN-LNL - 22.09.2017 - SB

JUpiter ICy moons Explorer (JUICE)

juice

```
UNIVERSITÄT
BERN
```

7 x 10¹³

 6×10^{13}

4 x 10¹³

2 x 10¹³

1 x 10¹³

Fluence

(# / cm

ี่น

Radiation hardness studies for the ATLAS experiment at CERN

b UNIVERSITÄT BERN

- > Beam current in the nA range
- Extraction in air
- > Doses in the 1-100 Mrad range (10^3-10^5 Gy)

Theragnostic isotopes

^b UNIVERSITÄT BERN

11

^b UNIVERSITÄT BERN

New method for production cross section measurement

UniBEaM TARGET ATTENUATORS HOLDER PROTON BEAM TARGET MATERIAL COLLIMATOR ⁴³Ca(p,n)⁴³Sc 400 TENDL 15 Levkovskij 91 350 DeWaal 71 This study 300 > Yield and purity are critical issues! section [mb] S 150 T. Carzaniga et al., Applied Radiation and Isotopes, 129 (2017) 96-102. 100 ECPM – Poster session - 35 8 10 12 14 16 18 6 Proton energy [MeV]

Solid target station with pneumatic target transfer system

D UNIVERSITÄT BERN

Ũ

MiniBeamLine

^b UNIVERSITÄT BERN

1

- > Quad doublet + XY steering within a single magnet -> complex beam optics
- > Compact: 40 cm long, 54 kg
- > Does not need a second bunker!
- > D-Pace, Canada

Characterization of the MiniBeamLine

D UNIVERSITÄT BERN

Ū

- Initial beam : ~ 10 mm FWHM (~as extracted from the cyclotron)
- Focused beam down to ~ 3 mm FWHM

M. A. Gilio, Master Thesis, University of Pisa, 2017.

Conclusions and Outlook

^b UNIVERSITÄT BERN

- Compact medical cyclotrons:
 - "Production and research under the same roof" is an added value!
- > The Bern cyclotron is an example:
 - 1d and 2d beam monitoring detectors
 - On-line system for transverse beam emittance measurements
 - Radiation hardness (CERN and ESA)
 - Novel radioisotopes for theranostics
 - Cross-section measurements
 - Compact Mini-Beam-Line + targets for powders
- > ... we are open to collaborations ...

Thank you very much for your attention!

^b UNIVERSITÄT BERN

 u^{\flat}

