Status of Cyclotron Laboratory at Institute for Nuclear Research and Nuclear Energy

- Project goals
- Cyclotron @ INRNE
- ¹⁸F production & activation of components

G. Asova, N. Goutev, A. Artinyan, D. Tonev INRNE-BAS

Key Points about the Cyclotron Project

- A "green field" market oriented infrastructure for GMP production of medical radioisotopes and radiopharmaceuticals with major R&D activities in the fields.
- Enables high level fundamental and applied research with radioisotopes/radiotracers in life sciences, industry, pharmacy and medicine. A contribution of the nuclear and particle community to the other fields of science in Bulgaria.
- With basic capabilities for materials and electronics irradiation, beam diagnostics, detector testing, experimental equipment development.
- Training within the R&D program in radiochemistry, radiation protection, and experimental nuclear physics for the nuclear energy and radioactive waste management industry and nuclear medicine in Bulgaria.

TR-24, ACSI (EBCO), Canada

PET: ¹¹C, ¹³N, ¹⁵O, ¹⁸F, ¹²⁴I, ⁶⁴Cu, ⁶⁸Ge

SPECT: ¹²³I, ¹¹¹In, ⁶⁷Ga, ⁵⁷Co, ^{99m}Tc

Accelerates H- ions

)

- > Extraction by stripping foils
- > Beam Energy: 15 24 MeV
- Beam Current: 400 µA
- > Upgradeable to 1 mA
- Dual Beam Extraction
- > External CUSP ion source
- Turbomolecular and cryo vacuum pumps
- Vacuum: 5.10-7 10-6 Torr

Beamlines, targets and target stations for PET&SPECT radioisotopes production

Financial Support for the Project

Donations from DOE of USA and Kozloduy NPP.

22/09/2017

Government support

Business plan showing the feasibility of such a facility (2015).

G. Asova <Status of Cyclotron Laboratory at Institute for Nuclear Research and Nuclear Energy>

• FAT done in August 2015

Delivery – January 2016

22/09/2017

Vision for the building layout

INRNE

Close to major roads – 4 hospitals nearby, airport, highways to N/E part of Bulgaria. 22/09/2017 G. Asova <Status of Cyclotron Laboratory at Institute for Nuclear Research and Nuclear Energy>

Cyclotron vault layout

Synthesis units (GMP/R&D)

Radioisotopes & radiopharmacy at INRNE

Till 1989 radioisotopes production at the Research Nuclear Reactor IRT-2000:

Sealed radioactive sources: 60Co, 75Se and 192Ir used for gamma-defectoscopy control, charging of gamma relays in testing equipment.

Short living isotopes: 18F, 42K, 24Na, 64Cu, 82Br, 140La for application in industry, criminology, biology, medicine, etc.

 Radioactive sources of 198Au, 90Y, 182Ta, 192Ir for treatment of certain types of malignant tumors.

> 12 products of great value for medical usage.

 Before EU GMP, INRNE used to produce cold kits for 99mTc and distribute them to hospitals (MDP for skeletal metastases, MDP-RPC for labeling of RBC, PYROPHOSPHATE for myocardial imaging, etc).

22/09/2017

Beam Diagnostics Modules. In-house technical design. Workshop for Development and Production/Physics.

Radiological characterization

Evaluate internal hazards:

- Nuclides in target body
- Define nuclides expected to be produces over the operation time of the machine and the vault
- Check vault radiation specs w.r.t. neutrons and gamma rays
- Define cooling time short lived nuclides (airborn ⁴¹Ar?)
- Check operators dose rate

Monte-Carlo approach FLUKA used for simulations

FLUKA

- > Emission and transport of secondary particles due to primary nuclear reaction
 - low energy neutron transport
 - takes into account the geometry of the impinging beam (e.g. point source)
- Assessment of the produced residual nuclei
- Possibility to score the same physics process at different irradiation & cooling times
 - buildup and decay of waste
- Not possible to include missing X-section libraries

Two-step approach to estimate fluence/waste within the vault

- > Simulate target irradiation, assess secondary particles
 - (*p, n*), (p, γ)

22/09/2017

> Use secondary particles as source irradiating vault components

¹⁸F high-current liquid target

- Delivered 3.8 mL targets
- Check thick target yield in ¹⁸O(p, n)¹⁸F
- Pipe secondary particles to be used as source irradiating the vault

Check the FLUKA Monte-Carlo methodics

Thick target – the reaction takes place with the volume of enriched water.

The lower the beam energy, the better the agreement:

- » Real beam not gaussian in any plane, not point-like, no experimental data on phase space
- » The FLUKA model is limited in terms of energy

22/09/2017 G. Asova <Status of Cyclotron Laboratory at Institute for Nuclear Research and Nuclear Energy>

Secondary particles – real target

A. Density distribution

Secondary particles – real target

B. Energy spectrum

The vault with the cyclotron

Neutron fields

No additional shielding around the targets. High-density concrete used.

Nuclides in cyclotron, irradiation for 6 h/d for a month @ 400 μ A, 24 MeV

⁵⁵Fe
$$(t_{1/2} = 2.7 \text{ y})$$

⁵³Mn $(t_{1/2} = 3.7e6 \text{ y})$
⁵⁶Mn $(t_{1/2} = 2.6 \text{ h})$
⁵⁹Fe $(t_{1/2} = 44.5 \text{ d})$
⁵⁴Mn $(t_{1/2} = 312 \text{ d})$

p. M preferable w.r.t. cyclotron contamination.

22/09/2017

Nuclides in vault, irradiation for 6 h/d for a month @ 400 μ A, 24 MeV

Nuclides in vault, irradiation for 6 h/d for a month @ 400 μ A, 24 MeV

		after EOB	3 weeks cooling
⁵⁹ F	44 d	8 GBq	
⁵⁶ Mn	2.6 h	0.6 GBq	
⁵⁵ Fe	2.7 y	13 GBq	
⁵⁴ Mn	312 d	1.4 GBq	
⁵³ Mn	3.7e6 y	15 Bq	
⁵¹ Cr	28 d	0.3 GBq	
⁴⁹ Sc	57 m	1 MBq	
⁴⁷ Sc	3 d	1.9 GBq	
⁴⁷ Ca	4.5 d	2 GBq	
⁴⁵ Ca	163 d	69 GBq	
⁴¹ Ca	1e5 y	6.7 MBq	
⁴³ K	22 h	0.3 GBq	
⁴² K	12.4 h	858 GBq	
³⁹ Ar	269 y	167 MBq	4.6 kBq
⁴¹ Ar 22/09/2017	109 m	atory at Institute for Nuclear Research	42 MBq / 1 GBq

Summary

- Major problem "researchers dislike wasting time and inspiration on infrastructure projects". They also lack skills and knowledge required to run an infrastructure investment project. The solution:
 - » seek consultants until "BEAM-ON" time and partnership with well established radiopharmaceutical companies and foreign R&D institutions
- > Land for the facility granted by BAS, geological survey done.
- > The building for the cyclotron facility ongoing call for public tenders.
- Monte-Carlo procedure needed for Bulgarian Nuclear Regulatory Agency
 - » model of the vault complete unless something changes
 - » more simulations to come
 - » vault with local target shielding, with marble concrete, activation in depth in the walls, etc.
 - » more isotopes to be checked $^{67, 68}$ Ga, 111 In, 64 Cu, etc.
- Design a solid target station capable to work with the beam load delivered by the cyclotron – far future.
- > Nuclear physics far future.

Thank you for the attention!

Thick target yield

Cross-check FLUKA calculations with published experimental data

- \rightarrow 100 and 400 μA for 18 and 24 MeV
 - » results normalized to particle charge (Y_{100 μ A} ~ Y_{400 μ A} depending on the beam energy)

IAEA data (IAEA-TECDOC-1211): 18 MeV: 1171 GBq/C measured 24 MeV - no data.

Nuclides in Havar foil

After irradiation with 400 $\mu A @$ 24 MeV, 6 h

After irradiation with 400 $\mu A @$ 24 MeV, 6 h

The intermediation with $+00 \ \mu$ ($\leq 2 + 100 \ v$, $0 \ H$		Exemption limit	
¹⁸⁵ W	75 d	5.6 MBq / 10 MBq	
¹⁸¹ W	121 d	7 MBq / 10 MBq	
⁹⁶ Tc	4.3 d	126 MBq / 1 MBq	
⁹³ Mo	4e3 y	0.6 Bq / <mark>0.1 GBq</mark>	
⁵⁹ Fe	44 d	558 MBq / 1 MBq	
⁵⁸ Co	71 d	2.7 MBq / 1 MBq	137 days in storage
⁵⁶ Mn	2.6 h	18 MBq / 0.1 MBq	
⁵⁶ Co	77 d	0.1 MBq / 0.1 MBq	
⁵⁵ Fe	2.7 y	0.03 MBq / 1 MBq	
⁵⁴ Mn	312 d	0.7 MBq	
⁵² Mn	5 d	71 MBq / 0.1 MBq	
⁵¹ Cr	28 d	23 MBq / 10 MBq	
³ Н	12.3 y	88 MBq / 1 GBq	

G. Asova <Status of Cyclotron Laboratory at Institute for Nuclear Research and Nuclear Energy>