

kvi - center for advanced radiation technology

The heavy ion irradiation facility at KVI-CART

Brian N. Jones¹, Marc-Jan van Goethem^{1,2}, Rob Kremers¹, Harry Kiewiet¹, Emiel van der Graaf¹, Sytze Brandenburg¹

¹ University of Groningen, KVI-Center for Advanced Radiation Technology ² University of Groningen, University Medical Center Groningen, Radiotherapy Department

40th European Cyclotron Progress Meeting INFN Laboratori Nazionali di Legnaro, Italy 20-23 September 2017

- Status: KVI-CART & AGOR Cyclotron
- New Installations
- Strategies

university of groningen

kvi - center for advanced radiation technology

The KVI-Center for Advanced Radiation Technology (KVI-CART):

- Superconducting AGOR (Accelerator Groningen Orsay) cyclotron
- Originally used for nuclear research
- Irradiation facility for radiobiological research (since 1998)
- Radiation hardness testing (since 2005)
 - mainly for space and aviation industry
 - recently also ground-bound electronics
- Detector Development (proton therapy)

kvi - center for advanced radiation technology

The KVI-Center for Advanced Radiation Technology (KVI-CART):

- There have been rumours about AGOR's future... our facility will remain operational for the next ten years (at least!)
- ESA Ground Based Unit for Radiation Biology
- ENSAR2 Horizon 2020 (TNA) INSPIRE (TNA)
- We are extending our capabilities!

radiation hardness assessment

- accelerator R&D
- radiation protection

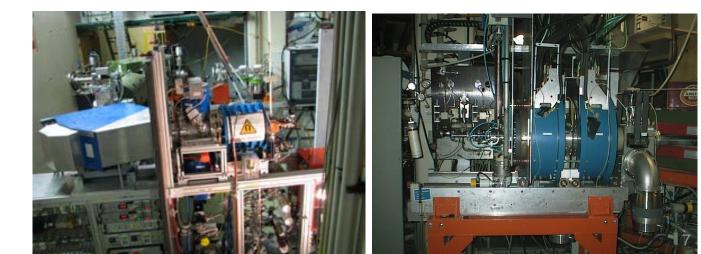
AGOR Cyclotron & Irradiation Facility

kvi - center for advanced radiation technology

Status of AGOR:

- We are extending the radiation hardness test capabilities to provide heavy ion beams at several energies ranging from about 8 to 90 MeV/u
- Expanding capabilities for radiobiology research (want to build an advanced facility, including imaging capabilities, dose delivery modalities from protons to carbon, scattered beams, scanning (wobble, line scanning, spot scanning)

The AGOR ion sources

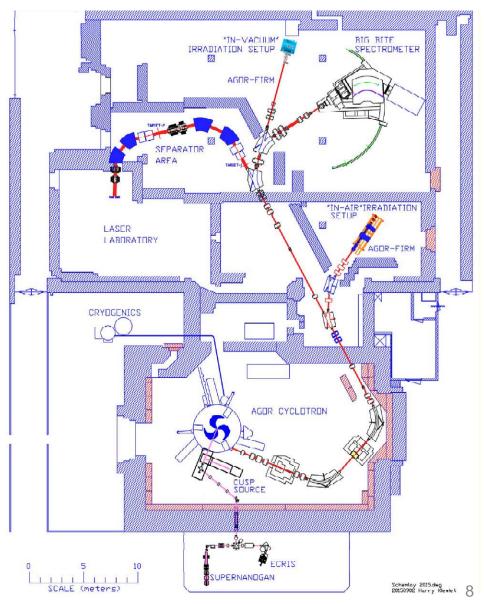

- multicusp ion source: hydrogen, helium
- ECR sources
 - 14 GHz KVI-AECR

production of highly-charged metal ions (e.g. Pb²⁷⁺)

 14 GHz SUPERNANOGAN gaseous elements (e.g. Ne⁷⁺)

 We seem to have a reproducibility problem in the injection line (low energy beam transport) related to higher-order aberrations

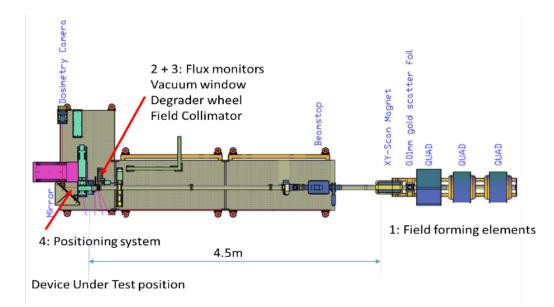
• We also need to improve performance of the AECR


AGOR Cyclotron & Irradiation Facility

kvi - center for advanced radiation technology

What's new?

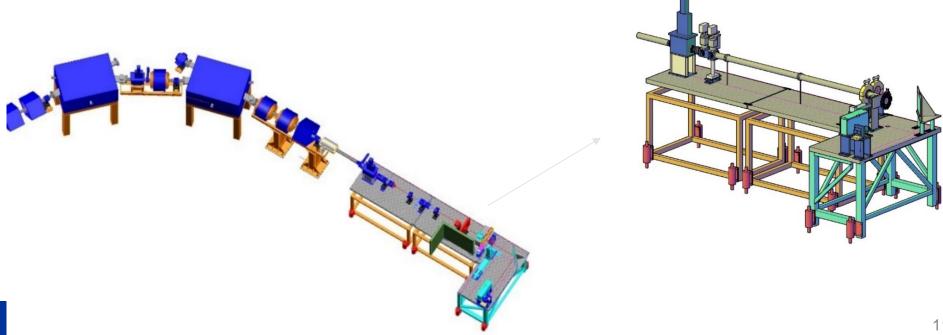
- Newly refurbished in-air irradiation facility used for radiation hardness testing & radiobiology
- In-vacuum irradiation



radiation technology

- For irradiations with light ions (He up to O at 90 MeV/u) proton set-up is being used with minor adaptations
- For irradiations with heavy ions of 30 MeV/u (carbon to xenon) more extensive adaptations are necessary

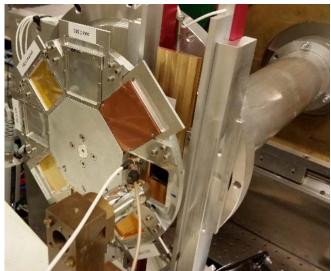
- New in-air heavy ion irradiation facility:
 - 1) xy-scanning system
 - 2) flux monitoring system
 - 3) collimator and degrader system
 - 4) positioning system



kvi - center for advanced radiation technology

1) Field forming system

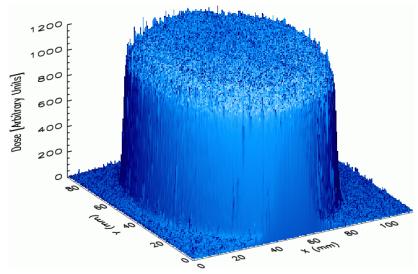
- Irradiation field created using a combination of a 10 µm thick gold scatter foil and a new x-y scan magnet system located just after the quads
- Scan magnets scan the beam over an area of 30 x 30 mm² (protons 10 x 10 • cm²) with a homogeneity of 10% (or better) at up to 200 Hz



kvi - center for advanced radiation technology

2) Fluence monitoring & measurement

- Flux <u>monitored</u> using four fast scintillation 'edge detectors' (YAP:Ce crystals readout with a Hamamatsu R12421 photo multiplier) by SCIONIX
- The ratio between upper/lower left and right 'edge detectors' will allow for monitoring of whether the field uniformity is changing
- Flux is <u>measured</u> using a detector with a known surface area placed in the center of the field



kvi - center for advanced radiation technology

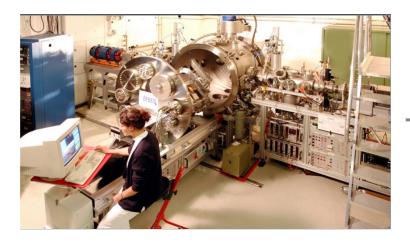
3) The degrader system

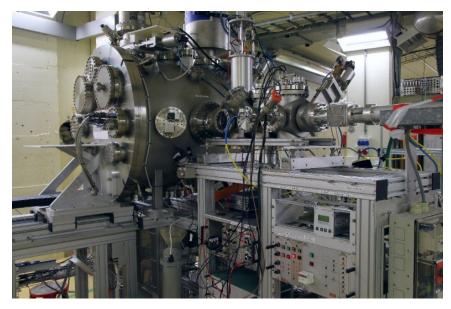
- A remotely controlled degrader system is implemented such that degrader material of different thicknesses can be inserted in the beam (vary the beam energy (LET))
- Ion species identification with Si detectors (scan Si detector)
- This system contains a scintillation foil (Lanex[™]), which can be used to check the field homogeneity

kvi - center for advanced radiation technology

4) Positioning

- XY-table has been extended with a Z direction allowing for finetuning of the beam energy
- Rotation stage is included allowing the device to be irradiated at any angle between 0 (perpendicular) to 45 degrees.

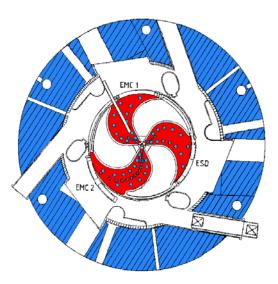




Installation for heavy ions: vacuum

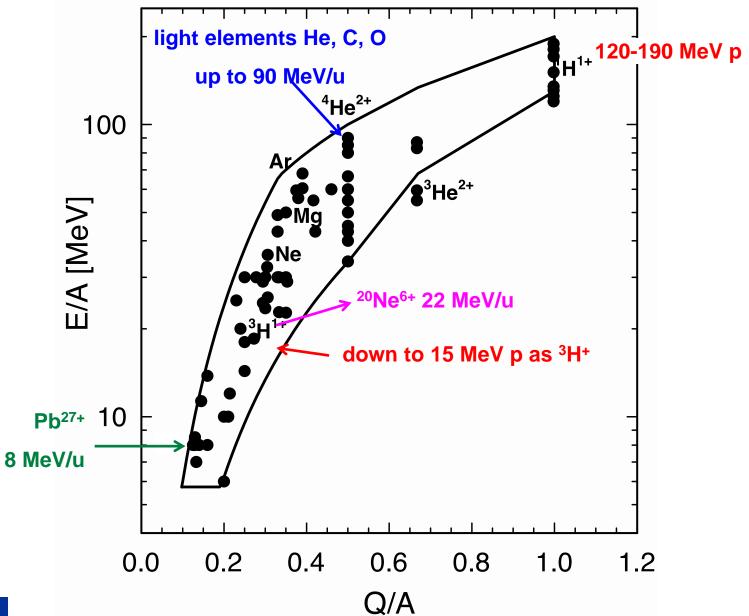
- For heavy ion beam irradiations with energies in the range of 8-15 MeV/u (up to Pb or Bi), the irradiations have to be performed in vacuum
- The "BIBER" irradiation set-up (donated by HZB Berlin) has been installed and will be used to perform in-vacuum irradiations
- vacuum chamber ~1 m³
- high accuracy positioning (X, Y, Z, q)
- used for: radiation damage, material modification
- future development: ion beam analysis

AGOR Cyclotron



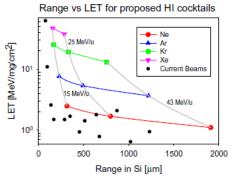
kvi - center for advanced radiation technology

AGOR Specifications:


- Superconducting magnet
- The magnetic field can be operated in the range 1.75 < B < 4.05 T
- The accelerating frequency ranges from 24 to 62 MHz, harmonic modes are h = 2, 3, 4
- The maximum dee voltage is 100 kV
- Ion source maximum injection voltage of 35 kV

Operating diagram / available beams

university of groningen


AGOR Cyclotron

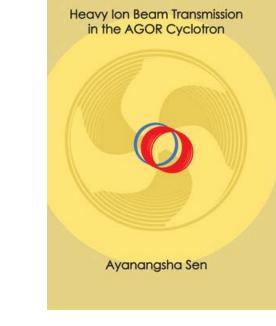
kvi - center for advanced radiation technology

Requirements

- Want a wide variety of pure beams with short waiting times
- Looking at various options (based on experience)

Available online at www.sciencedirect.com

Nuclear Instruments and Methods in Physics Research B 261 (2007) 82-85


www.elsevier.com/locate/nimb

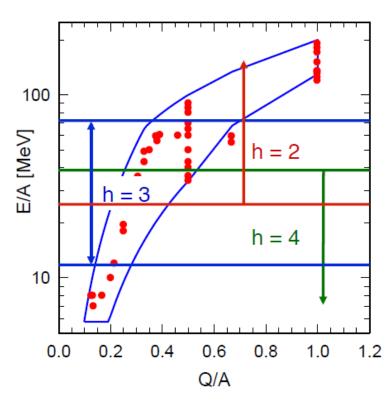
The irradiation facility at the AGOR cyclotron

Sytze Brandenburg, Reint Ostendorf, Mariet Hofstee *, Harry Kiewiet, Hans Beijers

Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlands

Available online 22 May 2007

ELSEVIER


AGOR Cyclotron

kvi - center for advanced radiation technology

Strategies

- Use a set of ions (O, Ne, Ar, Kr, Xe) from the AECR source each with Q/A ≈ 0.25 to achieve 30 MeV/u
- 30 minute challenge
- Also determining if the inflector needs to be switched every time the cyclotron tuned to different harmonic
- Tune the RF to find the other harmonic (saves time)

kvi - center for advanced radiation technology

By 2008 AGOR will...

- Continue to provide proton irradiation in air (190 MeV)
- Provide in-air irradiation (C to Xe at 30 MeV/u)
- Provide in-vacuum irradiation (C or heavier at 8 to 10 MeV/u, Pb or Bi at 15 MeV/u)

AGOR: the next 20 years!

kvi - center for advanced radiation technology

www.rug.nl/kvi-cart

21