

The **S2C2** : experiences from in-factory testing and on-site installations

Jarno Van de Walle

for the IBA S2C2 teams

S2C2 and ProteusONE[®] : overview

Beam alignment into the gantry

Beam simulations in the gantry

Beam energy

Proteus ONE

- 2 sites clinical :
 - Centre Antoine Lacassagne (Nice, France)
 - Beaumont Hospital (Detroit, US)
- 3 sites on-going installation
 - Caen, France
 - Sapporo, Japan
 - Newport, UK
- 9 sites in the coming 2 years
- Currently around 1 year from rigging to first patient
- To be reduced to 6 months ...
- Challenges :
 - Training of installation teams
 - Manufacturing capabilities
 - Clear, unambiguous installation procedures
 - S2C2 should be reproducible, well studied and understood

S2C2 : main parameters

- ✓ Weak focusing (n<1) peak field = 6.1 T (regenerator)
- ✓ Dee voltage : $7 \rightarrow 10 \text{ kV}$
- ✓ Frequency modulation (90→60 MHz) @ 1 kHz \Rightarrow pulsed beam !
- ✓ Injection frequency 87 MHz
- ✓ Extraction frequency 63 MHz
- ✓ Acceleration time \approx **450** µs
- ✓ Half-integer regenerative extraction $(2v_r=2)$

Beam alignment into the gantry

Horizontal alignment in extraction beam line

- ✓ Horizontal alignment of the beam : based on :
 - magnetic forces observed on the superconducting coil (tie rod forces)
 - reference trajectory in the return yoke and extraction channel (see gafchromics)

Horizontal alignment in extraction beam line

- ✓ Horizontal alignment of the beam : based on :
 - magnetic forces observed on the superconducting coil (tie rod forces)
 - reference trajectory in the return yoke and extraction channel (see gafchromics)
 - small deflection when entering the gantry due to small but non-negligible fringe field

Fringe field along extraction line

- ✓ Several steps in vertical coil alignment :
 - Observation of vertical magnetic forces on the superconducting coil
 - Observation of beam inside the S2C2 near extraction
 - Observation of the vertical alignment at the exit of the S2C2
 - Observation of steering effects with quadrupoles in the extraction beam line

11

iba

- \checkmark Several steps in vertical coil alignment :
 - Observation of vertical magnetic forces on the superconducting coil
 - Observation of beam inside the S2C2 near extraction
 - Observation of the vertical alignment at the exit of the S2C2
 - Observation of steering effects with quadrupoles in the extraction beam line

- ✓ Several steps in vertical coil alignment :
 - Observation of vertical magnetic forces on the superconducting coil
 - Observation of beam inside the S2C2 near extraction
 - Observation of the vertical alignment at the exit of the S2C2
 - Observation of steering effects with quadrupoles in the extraction beam line

- ✓ Several steps in vertical coil alignment :
 - Observation of vertical magnetic forces on the superconducting coil
 - Observation of beam inside the S2C2 near extraction
 - Observation of the vertical alignment at the exit of the S2C2
 - Observation of steering effects with quadrupoles in the extraction beam line

- ✓ Several steps in vertical coil alignment :
 - Observation of vertical magnetic forces on the superconducting coil
 - Observation of beam inside the S2C2 near extraction
 - Observation of the vertical alignment at the exit of the S2C2
 - Observation of steering effects with quadrupoles in the extraction beam line
 - Observation of vertical beam angle

NEWPORT MEASUREMENT

16

Beam simulations in the gantry

BEAM TRACKING FROM SOURCE TO ISOCENTER

- AOC : injection into the S2C2 up to 3 MeV
- 3 MeV to 225 MeV : "phase_motion" (energy, phase, vertical motion and orbit center motion)
- AOC from 225 MeV to extraction up to exit port
- TRANSPORT / MAD-X / transfer matrix formalism

BEAM TRACKING FROM SOURCE TO ISOCENTER

- AOC : injection into the S2C2 up to 3 MeV
- 3 MeV to 225 MeV : "phase_motion" (energy, phase, vertical motion and orbit center motion)
- AOC from 225 MeV to extraction up to exit port
- TRANSPORT / MAD-X / transfer matrix formalism

Fitted emittance to gantry beam sizes in Beaumont Measured emittance in Beaumont ("variquad") AOC emittance

- Standard TRANSPORT code (not slits)

- Standard TRANSPORT code (not slits)
- TRANSPORT code with slits

(ba

- Standard TRANSPORT code (not slits)
- TRANSPORT code with slits
- Proton tracking with matrix formalism

Beam simulations from source to isocenter

Beam energy

30

✓ Linearity of extracted beam energy versus coil current

= 460 keV/A

✓ Linearity of extracted beam energy versus coil current

= 460 keV/A

- ✓ Much lower energies extracted :
 - Proton are not accelerated anymore near extraction radius
 - Protons can be extracted at lower energies due to "emittance blow-up"

What happened to "lost" protons again ...

What if ... We intentionally loose beam very close to extraction ?

We drop the dee voltage a few μ s before extraction ...

Observation on 2nd RF period:

(1) protons coming out on the rising frequency flank

⇒ Explained from energy resonances (see previous)

 $f_{RF} = f_p$

(2) protons coming out before the extraction frequency

⇒ Explained from emittance blow-up and orbit center instability when off-centering becomes too large.

$$f_{RF} = f_p \pm (v_r - 1) f_p$$

Iha

Conclusions

- Modeling the ProteusONE system from source to isocenter is very useful to link machine performance to measurements at different positions along the beam path.
- ✓ Steap learning curve from 5 on-site installations
- ✓ Coil and beam alignment are very well controlled and reproducible
- ✓ Energy spread and range stability in isocenter are linked with accurate source positioning
- ✓ Gantry optics is very valuable in deducing beam properties from the S2C2
- ✓ Future site installations need :
 - Efficient procedures
 - Well trained installation teams
 - Accurate and dedicated measuring methods
 - A careful follow-up to spot and analyze potential problems on the cyclotron side

Thank you

Jarno Van de Walle

Jarno.vandewalle@iba-group.com

©2017 Ion Beam Applications SA. All rights reserved. Reproduction of any of the material contained herein in any format or media without the prior and express written permission of Ion Beam Applications SA is prohibited.