

Upgrading of LNS Superconducting Cyclotron to deliver beam power higher than 2-5 kW

Luciano Calabretta on behalf of the LNS Accelerator Division

The Cyclotron is used to deliver stable ion beams but also as driver to produce radioactive beams, separated by the in-flight method.

Short History of Catania Superconducting Cyclotron: 1980 Francesco Resmini and Milan Group study & design the **K800 Superconducting Cyclotron; Cyclotron construction start in Milan in 1981;** 1984 death of Resmini ... and construction delays; 1990 the cyclotron is moved & installed in Catania with the fundamental support of Prof. C. De Martinis; **1994 acceleration of first beam injected by TANDEM;** 2001 from radial injection to axial injection by ECR ion sources;

Our Cyclotron is a three sectors machine able to accelerate ions from H₂⁺ up to Uranium
Maximum energy for fully stripped ions about 80 AMeV;
Heavy ions up to 30-20 AMeV;
Maximum power of extracted beam 140 W

Present critical issues of our Cyclotron!

 We have 3 independent LN shields, but one is already closed due to a leak and the 2nd shields has also a small leak;

- Recently we found a leak between the main cryostat and the acceleration chamber of the cyclotron;

- There are small leaks from bad vacuum to the vacuum chamber through the LINER cover and this become a problem for the higher beam power and because the bad vacuum with time became worst, because the sealing of Trim Coils is not very good!

The NUMEN experiment at LNS is measuring the Nuclear Matrix Element through reaction of Double Charge Exchange using as projectile ¹²C, ¹⁸O ²⁰Ne with energies in the range15-70 AMeV. The NME is also a relevant parameter to evaluate the expected rate of the neutrino less double beta decay.

> Experiments are performed by the magnetic spectrometer MAGNEX > Wide angular acceptance \triangleright Possibility to measure at 0° > High resolution spectrum > Angular distribution up to 10 nb/sr

Preliminary experiments performed from 2014, using beam intensity of about 10 pnA, demonstrated the need to increase the beam intensity of a factor $100 \rightarrow 2-10$ kW!

Radioactive Beams developed at LNS

		intensity	
primary beam	beam	(kHz/100W)	
18O 55 AMeV	16C	120	
setting 11Be	17C	12	
	13B	80	To increase the delivered power beam
	11Be	20	
	10Be	60	up to 10 kW could be very interesting
	8Li	20	
18O 55 AMeV	14B	3	also for experiment using radioactive
setting 12Be	12Be	5	
	9Li	6	ion beams.
	6He	12	
13C 55 AMeV	11Be	50	
setting 11Be	12B	100	
36Ar 42 AMeV	37K	100	Unfortunately due to rediannetection
setting 34Ar	35Ar	70	Unfortunately, due to radioprotection
	36Ar	100	a an atua inta tha maning manya haana manyan
	37Ar	25	constraints the maximum beam power
	33CI	10	
	34CI	50	to produce radioactive beam will be
	35CI	50	
20Ne 35 AMeV	18Ne	50	limited to 2-3 kW
setting ne18	17F	20	
	21Na	100	
70Zn 40 AMeV			
setting 68Ni	68Ni	20	
			XXXX ECPVI, 20-23 Sentember, Legnaro (PD), Italy

Legnaro (PD), Italy

Central Region

Electrostatic deflector

Unfortunately the extraction efficiency is only 50%! Despite the deflector is water cooled the maximum beam extracted stay around 100 W! Spiral Inflector

Stripping extraction to deliver higher power : Pros & Cons

For light ions, with enough energy and stripper thickness longer than the equilibrium thickness, the amount of ions stripped at charge state q=Z is ≥ 99%

Ion	Energy	Isource	**Iacc.	*Stripping	Iextracted	Pextracted
	AMeV	еµА	еµА	efficiency	pps	Watt
¹² C ⁴⁺	45	400	60(4+)	4 + → 6 +, 100%	9.4*10^13	8100
$^{12}C^{4+}$	60	400	60(4 +)	4 + → 6 +, 100%	9.4*10^13	10800
¹⁸ O ⁶⁺	29	400	60(6 +)	6+ → 8+, 99.96%	6.2*10^13	5220
¹⁸ O ⁶⁺	45	400	60(6 +)	6+ → 8+, 100%	6.2*10^13	8100
¹⁸ O ⁶⁺	60	400	60(6+)	6+ → 8+, 100%	6.2*10^13	10800
¹⁸ O ⁷⁺	70	200	30(7+)	6+ → 8+, 100%	2.7*10^13	5400
²⁰ Ne ⁷⁺	28	400	60(7 +)	7+ → 10+, 99.91%	5.3*10^13	4800
²⁰ Ne ⁷⁺	60	400	60(7 +)	7+ → 10+, 99.95%	5.3*10^13	10280
$^{40}Ar^{14+}$	60	400	60(14+)	14+ → 38+, 99.8%	2.7*10^13	10280

*Atomic Data and Nuclear Data tables, Vol. 51, N° 2, July 1992, table 2 pag. 187 **injection efficiency 15%, using existing buncher Trajectories extracted by stripping don't fit the existing extraction channel and their sizes are too large.

According to Mario Maggiore suggestion, we decided to perform the extraction through a new extraction channel, with larger radial and vertical size!

All the ions of interest can be extracted using stripper placed in two regions:

- One region is on the hill where the 1st deflector is placed;
- Another region is in the Dee before deflector 1.

The biggest drawbacks are:

- Construction of a set of new coils ;
- Construction of a new cryostat;
- Stop of laboratory activity for about 18 months.

The advantages are:

- A new cryostat with better LN cooling, lower cryogenic liquid consumption, a longer life;
- More room for extracted beams;
- New perspectives for our laboratory.

Mean life of the stripper foils

Eric Baron (Ganil) suggest this formula to evaluate the mean life of carbon stripper foil

 $T(hours) = 3.6.10^4 \frac{W(MeV/A)}{Z^2 \cdot \overline{v} \cdot \overline{J}(p\mu A/cm^2)}$ V~5 to 8

For a Oxigen-18 beam of 60 μA, and at 60 MeV/n (10 kW), the expected mean life according to the previous formula is 126-202 hours (beam spot 3x10 mm²), equivalent to 5-8 days!
We must achieve update experimental data of mean life!

We could increase the mean life of foils, increasing the area of the beam spot on the stripper, by tilting the stripper of 45°-60°!

We could increase the vertical size of the beam using the Walkinshaw resonance!

From electrostatic extraction to stripping extraction

A preliminary design of a new set of superconducting coils, with form factor very similar to the existing coils, and a new cryostat were evaluated together with MIT. The current density is increased from the present 35 A/mm² to 54 A/mm²

Now we are officially discussing with four companies (ASG, BABCOCK, SIGMAPHY and TESLA) to evaluate the critic items of the project and take account of their suggestion.

Example of beam envelope along the

extraction trajectory

The magnetic channels stay around at 360° after the stripping position, this minimize the radial broadening effect due to the energy spread!

The effect of the accelerating voltage (75 kv & 80 kV) on the energy spread of the accelerated beam is not serious! The bunch length used in the simulations are of 26° and 32° for the 75 kV and 80 kV respectively

 $V_{\text{Dee}} = 75 \text{ kV}$

ΔE

±0.3 %

±0.35 %

±0.4 %

64.7 64.8 64.9 65

Distribution at

stripper position

[%]

93.9

96.6

98.3

50

40

0

Radial and axial envelopes for the ion beam 18O at stripping energy equal to 65 AMeV along the stripping trajectory. The effect of energy spread 0.3% is also shown.

New and larger magnetic channel to control the beam sizes along the extraction trajectories

The blue line is the result of 3D simulations of the Magnetic Channel in the cyclotron true magnetic field, fine optimization were necessary to achieve the green lines

See poster 7

perpendicular to the

median plane

XXXX ECPM, 20-23 September, Legnaro (PD), Italy

See poster 7

Height of the holes ± 12.5 cm Holes to compensate C1 Holes to compensate C2 Holes to compensate C2 Holes to compensate C2

The existing iron yoke of our cyclotron

a)

The holes for the new extraction channel and for the radial tie rods Additional holes for 1st and 2nd harmonics compensatation

1st and 2nd harmonic contributions before and after the compensation

See poster 7

XXXX ECPM, 20-23 September, Legnaro (PD), Italy

See poster 7

Production of At-211 by internal target

At211 is an alpha emitter that is accessible through the reaction Bi209 (alpha, 2n) At211 and could be used as a therapy radionuclide. The maximum energy for alpha beam must be limited at about 28 MeV to avoid the production of the contaminant, Po 210! (by private lesson of Dick Johnson)

Unfortunately the stripper extraction don't allow to extract helium beam from our cyclotron. But it is possible to irradiate a Bismuth internal target.

The cyclotron can be set to accelerate He¹⁺ at 28 MeV energy at the orbit with R=700 mm. A beam power in excess of 500 W (18 pmicroA @ 28 MeV) will be available for the target irradiation. A production of At-211 in excess of 200 mCi it is expected after an irradiation of 8 h.

Main items of the upgrading program managed by Danilo Rifuggiato

Looking for intensity • New s.c. magnet: cryostat with coils Stripper system in progress Magnetic channels in progress • New liner Ions Sources-Cyclotron matching Cyclotron-Magnex beam line

New trim coils ?
RF cavities insulators ?
New power supplies ?
New Helium liquefier or small reliquefiers

Looking for reliability

Thanks for your attention!

Parameters of the existing coil and of the new proposed coils

XXXIX ECPM, Louvain La Neuve

XXXIX ECPM, Louvain La Neuve

XXXIX ECPM, Louvain La Neuve

(PD) Italy

(PD) Italy

Quench Analysis Assuming a cable feed with 2000 A

A study of coil made by a smaller cable powered with about 600 A is in progress and the hot spot should stay below120 K