9/30/2017 | Page 1

Activities from Cyclotron facility at German Cancer Research Center (DKFZ), Heidelberg

The DKFZ Scanditronix MC32NI Cyclotron

dkfz. GERMAN CANCER RESEARCH CENTER

June 30th/July 1st, 2016, DKFZ, Heidelberg

From proton to patient

The interaction of Physics, Chemistry and Medicine

Wolfgang Weber, Daniel Burkert, Oliver Neels, Viplav Gupta, Klaus Kopka Division of Radiopharmaceutical Chemistry

GERMAN CANCER RESEARCH CENTER IN THE HELMHOUTZ ASSOCIATION

50 Years – Research for A Life Without Cancer

Cyclotron

Fig. 1 Particle accelerator

Charged particles such as protons and deuterons are accelerated in a particle accelerator on a circular path in a magnetic field with alternating electric fields. They fly through a so-called airless beam line and hit the target consisting of a target body with an enriched stable isotope which is transferred into the desired radionuclide after nuclear reaction.

Target

 \rightarrow

Fig. 2 Target

The desired radionuclide is obtained by a nuclear reaction of the charged particle and the target material. The radionuclide needs to be processed rapidly, since it decays with a short physical half-life.

Radiopharmacy

Fig. 3 Radiosynthesizer in clean room environment

In a fully automated synthesis module the radionuclide is attached to a precursor (e.g., a sugar) and purified under GMP conditions. The result is a radiolabeled pharmaceutical, which then undergoes quality control.

PET

Fig. 4 Patient examination on a PET/CT scanner

An examination of the patient takes place on a PET/CT scanner. In modern nuclear medicine hybrid PET/CT and PET/MRI scanners are used.

The radiopharmaceutical is injected into the patient. It accumulates in the tumor. By external measuring of the radioactivity the tumor can be detected and evaluated noninvasively.

Viplav Gupta
DKFZ,
Heidelberg

A Brief Historical Overview The first Cyclotron from AEG - 1971

1971: Bought first AEG Cyclotron (straight hill sector; proton and He – 22MeV, 3He: 28, Deutrons: 11 MeV). The acceptance test of this cyclotron was not yet finished when AEG closed their cyclotron unit due to financial problems. Thus, the cyclotron team worked for themselves for its maintenance and repairs, ran for around 18 years

Already in 1980, it was quite obvious that AEG cyclotron, due to frequent break-downs and hard repair works, couldnt provide a long term reliability. Also, most cooperators recommended p and d with higher energies.

Viplav Gupta	
DKFZ,	
Heidelberg	

Basic considerations

a) Energy and Particles: to ease extraction and minimize radiation burden it was decided to choose a negative ion cyclotron

from the cross sections of the nuclear reactions for the relevant radionuclides ¹²³, ⁸¹Rb etc. we concluded the proton energy of the new cyclotron to be about 30 MeV

Viplav Gupta	
DKFZ,	
Heidelberg	

Page 6

9/30/2017

A Life Without Cancer

b) Search for the appropriate Product

4 prominent cyclotron producers were asked:

- IBA: H⁻ yes, D⁻ no
- CGR: no negative ions
- TCC: had big problems at that time (main coils)
- Scanditronix: H⁻ yes, D⁻ we try it (Stig Lindbäck)

• and it worked!

End of an Era (1971 - 1990)

- On July 15, 1990 the AEG Cyclotron was switched off by *Dr. Maier-Borst*, the then Head of the Department.
- A few weeks later, *Karl Erdmann* from Vancouver asked for the design drawings of the Magnet and took them with him.

9/30/2017 | Page 8

A new Era – Scanditronix MC32NI(1991 - 2017)

50 Years – Research for A Life Without Cancer

4 spiral sectors, 32 MeV H⁻/p,16MeV D⁻/d variable Variable energy; 55 tons; 186 kVA

> 1988: Approval from International Peer Review Committee

> 1989: Ordered on 31.12.89: a few weeks after reunification of Germany

> 1990: tests in Uppsala with Scanditronix

> 1991: 25.04 and 27.04 – delivery of MC32NI to Heidelberg. In July, acceptance test

1992: the production of RNs for PET was started on a regular basis

Viplav Gupta	
DKFZ,	
Heidelberg	

1000 tons of heavy concrete had to be set aside to make space for the exit of the CC + 200 tons donated by the GSI / Darmstadt for shielding the new cyclotron

2 of its kind in the world

MC32NI @ DKFZ Heidelberg, Germany

MC32NI @ Rigshospital Copenhagen, Denmark Pic: Dr. Holger Jensen, Copenhagen

Viplav Gupta	
DKFZ,	
Heidelberg	

Page 12

9/30/2017 |

Layout of Heidelberg Cyclotron Hall

Viplav Gupta	
DKFZ,	
Heidelberg	

Currently radioisotopes production from our cyclotron

50 Years – Research for A Life Without Cancer

The cyclotron is employed for daily production of ¹⁸F- which is further used for labelling of precursors of ;

[¹⁸F]Fluorodeoxyglucose (FDG),
[¹⁸F]Fluorethyltyrosine (FET),
[¹⁸F]Natrium Fluoride (NaF),
[¹⁸F]Fluorothymidine (FLT),
[¹⁸F]Fluoroazomycin Arabinoside (FAZA)
[¹⁸F] PSMA-1007

Nuklides	Nuclear Reactions Production in Cyclotron)	T _½ [min]
¹¹ C	¹¹ B(p,n) ¹¹ C	20,3
¹³ N	$^{16}O(p,\alpha)^{13}N$	9,97
¹⁵ O	¹⁵ N(p,n) ¹⁵ O	2,03
→ ¹⁸ F	¹⁸ O(p,n) ¹⁸ F	109,8
→ ⁶⁴ Cu	⁶⁴ Ni(p,n) ⁶⁴ Cu	12,7 h

And bimonthly/monthly production of ⁶⁴Cu for PET studies

9/30/2017 | Page 14

Solid Target Design

Nuclear Reaction and Radiochemical Yield - ⁶⁴Cu

9/30/2017 | Page 15

50 Years – Research for A Life Without Cancer

dkfz.

Ga 60	Ga 61 0,15 s	Ga 62 116 ms	Ga 63 31,4 s	Ga 64 2,62 m	Ga 65 15 m	Ga 66 9,4 h	Ga 67 78,3 h	Ga 68 67,63 m	Ga 69 60,108	Ga /0 21,15 n	Ga /1 39,892	
	β+	β ⁺ 8,1	$\begin{array}{l} \beta^+ \sim 4,5\\ \gamma 637; 627;\\ 193; 650 \end{array}$	β ⁺ 2,9; 6,1 γ 992; 808; 3366; 1387; 2195	β ⁺ 2,1; 2,2 γ 115; 61; 153; 752	β ⁺ 4,2 γ 1039; 2752; 834; 2190; 4296	ε no β ⁺ γ93;185;300	β ⁺ 1,9 γ 1077; (1833	.) σ1,68	β 1,7 ε γ (1040; 176	σ 4,7	β' γ 6
Zn 59 182 ms	Zn 60 2,4 m	Zn 61 1,5 m	Zn 62 9,13 h	Zn 63 38,1 m	Zn 64 48,6	Zn 65 244,3 d	Zn 66 27,9	Zn 67 4,1	Zn 68 18,8	Zn 69 13,8 h 56	Zn 70 0,6	
β ⁺ 8,1 γ 491; 914 βp 1,78; 2,09; 1,82; 1,38	β ⁺ 2,5; 3,1 γ 670; 61; 273; 334	β ⁺ 4,4 γ 475; 1660; 970	$\substack{ \varepsilon \\ \beta^+ \ 0,7 \\ \gamma \ 41; \ 597; \ 548; \\ 508 }$	β ⁺ 2,3 γ670; 962; 1412	or 0,77	ε; β ⁺ 0,3 γ 1115 σ 66	σ1,0	σ6,9	σ 0,072 + 0,8	iγ 439 β ⁻ γ (574) γ (3	9 9 9) 00,0081+0,083	2 7 48 62
Cu 58 3,20 s	Cu 59 82 s	Cu 60 23 m	Cu 61 3,4 h	Cu 62 9,74 m	Cu 63 69,17	Cu 64 12,700 h	Cu 65 30,83	Cu 66 5,1 m	Cu 67 61,9 h	Cu 68	B Cu 69 3,0 m	8
β ⁺ 7,5 γ 1454; 1448; 40	β ⁺ 3,8 γ 1302; 878; 339; 465	β ⁺ 2,0; 3,9 γ1332; 1792; 826	β ⁺ 1,2 γ 283; 656; 67; 1186	β ⁺ 2,9 γ (1173)	σ4,5	 ε; β[−] 0,6 β⁺ 0,7 γ (1346) σ ~ 270 	σ2,17	β 2,6 γ 1039; (834 σ 140) β 0.4; 0.6 γ 185; 93; 91	85; 111 β 1,7; 1,9 γ 1077 126	-5: β 2,5 γ 1007; 834; 77: 531 9	4. 7. 90 12
Ni 57 36,0 h	Ni 58 68,077	Ni 59 7,5 · 104 a	Ni 60 26,223	Ni 61 1,140	Ni 62 3,634	Ni 63 100 a	Ni 64 0,926	Ni 65 2,52 h	Ni 66 54,6 h	Ni 67 21 s	Ni 68 19 s	
ε β ⁺ 0,8 γ 1378; 1920; 127	σ4,6	ε; β ⁺ no γ; σ 77,7 σ _{n,α} 12,3 σ _{n,ρ} 1,34	σ2,9	σ 2,5	σ 15	β 0,07 no γ	#15	β ⁻ 2,1 γ 1482; 1115; 366 σ 22	β 0,2 no γ	β 3,8 γ(1937; 111 822)	5; β ⁻ g	β Υ
Co 56 77,26 d	Co 57 271,79 d	Co 58 8,94 h 70,86 d	Co 59 100	CO 60 10,5 m 5,272 a	Co 61 1,65 h	Co 62 14,0 m 1,5 m	Co 63 27,5 s	Co 64 0,3 s	Co 65 1,14 s	Co 66 0,23 s	6 Co 67 0,42 s	
 ϵ; β⁺ 1,5 γ 847; 1238; 2598; 1771; 1038 	έ γ 122; 136; 14	iγ (25) i<	• σ20,7 + 16,5	γ 59 β 0.3; e ⁻ 1,5, 1,5, β ⁻ γ 1332 γ (1332) 1173 σ 58 σ 2,0	β 1,2 γ 67; 909	$\begin{array}{cccc} \beta^{-} 2.9. & \beta^{-} 4.1 \\ \gamma 1173; & \gamma 1173; \\ 1163; & 2302; \\ 2003 & 1129 \end{array}$	β 3,6 γ87; 982	β 7,0 γ 1346; 931	β ⁺⁻ 6,0 γ 1142; 311; 964	β 7,0 γ 1425; 124 471	6; β 6,6 γ 694	β
Fe 55 2,73 a	Fe 56 91,72	Fe 57 2,2	Fe 58 0,28	Fe 59 44,503 d	Fe 60 1,5 · 10 ⁶ a	Fe 61 6,0 m	Fe 62 68 s	Fe 63 6,1 s	Fe 64 2,0 s	Fe 65 0,45 s	5 Fe 66	
ε πογ π 13	σ2,6	σ2,5	σ1,3	β ⁼ 0,5; 1,6 γ 1099; 1292 σ < 10	β 0,1 m	β 2,6; 2,8 γ 1205; 1027; 298	β 2,5 γ 506 g	β 6,7 γ 995; 1427; 1299:	β ⁻ γ311	β		
⁶⁴ Ni (p	,n) ⁶⁴ Cι	I		Ctort	Ener	Coul	lomb (mt T	orgot V	iold	mC:/Ab	Thickness
Energy a	at the ta	rget =1	1,7MeV	Energ (MeV)	y at the target	gy Cou e (μAh t) (1 (1	f Ni mg)	disc (r	nCi)	mci/µAn	the target (µm)
Beam C	Current	= 25 μA		25	(MeV))				0.7	0.00	256.4
Power	= 292,2	Watt		25	11,7	30	č	9,0 G	010 0	0,7	2,29	330,4

Viplav Gupta	
DKFZ,	
Heidelberg	

Liquid Target Design

9/30/2017 | Page 17

Goal & Challenge

Translation into the Clinics

50 Years – Research for A Life Without Cancer

dkfz

Imaging:

Detection tumor multifocality and biologic heterogeneity on a whole-body level

Radiopharmacy

Developing novel radiopharmaceuticals for diagnosis and therapy

Radiooncology & Radiobiology

Developing biologically personalized, image-guided high-precision radiotherapy

New Facility ????

Viplav Gupta	
DKFZ,	
Heidelberg	

Page 18

9/30/2017 |

Proposal for Research and Development Center for Radiopharmaceutical Chemistry (FER)

•			
A	LIT.	n	٦r
	~		

Division

9/30/2017 | Page 19

A Life Without Cancer

9/30/2017 | Page 20

Proposal for Research and Development Center for Radiopharmaceutical Chemistry (planned ...)

9/30/2017 | Page 21

Radiology Research Center (starts 2014...)

Viplav Gupta	
DKFZ,	
Heidelberg	

Page 22

9/30/2017 |

Massive problems since Feb'17

- 1) Leakage in the cooling room defective valves, vacuum pumps
 - Consequences: Flood of water everywhere in the hall,
 - Danger of short circuits,
 - Alarms
- 2) Defective pressure sensors and flow regulators
 - Consequences: No monitoring of the cooling water possible leading to the damage of cooling tubes of the devices and power supplies for main magnet, RF, vacuum pump etc.
- 3) Automatic filling system in copper and aluminum circulation circuit
 - Consequence: Manual refilling of the 800 liters tank every 2-3 days
- 4) Software bug
 - Consequences: handling of radioactivity due to increased manual work
- 5) And so on...the list is long enough for this session \odot

Problems continue...

50 Years – Research for A Life Without Cancer

Reasons :

- i) Aging
- ii) Absence of maintenance contract, no expert support was available
- iii) Upgrades, maintenances, repairs not done periodically
- iv) Bad Luck, bad timing ..?? Has to happen sometime..
- v) Tremendous pressure of routine production for clinics
- vi) Lack of spare parts and expert companies
- Needed \rightarrow Money, time, resources

50 Years – Research for A Life Without Cancer

• Radionuclide production and Radiopharmceuticals development is and will be proceeding further towards Theranostic approach.

- Goal:
- There are dozens of matched-pair combinations suited for theranostic approach.
- The idea is to buy those radionuclides readily and commercially available on the market,
- produce those which are not available from cyclotrons
- And to make their matched pair and go for theranostic approach !

9/30/2017 | Page 25

Intent for future continued.....

50 Years – Research for A Life Without Cancer

Theranostic Pairs	Half Life (t _{1/2})	Decay mode	Nuclear reactions	Beam energy
^{99m} Tc*/ ¹⁸⁶ Re	6h/3.72d	γ=0.141 MeV (99%)/ β=1.07 MeV (71%), γ=137.2 keV %)	¹⁸⁶ W(d,2n) ¹⁸⁶ Re ^{99m} Tc* = commercially available	Deuterons ≈14MeV
¹⁷⁷ Lu*/ ⁸⁶ Y	6.7d/14.7h	$β^{-}$ = 0.49 MeV, γ=208 keV (11 %), 113keV (6.6%) ² / β ⁺ = 1.2 MeV	^{nat} Rb(d,2n) ⁸⁶ Y ⁸⁶ Sr(p,n) ⁸⁶ Y	d ≈ 16 MeV p ≈ 20 MeV
90Y*/86Y	64.1h/14.7h	β ⁻ = 2.28 MeV/ β ⁺ = 1.2 MeV	Do	-Do
131 */124 2	8d/4.2d	β^{-} = 0.61 MeV/ β^{+}_{max} = 2.1 MeV	¹²⁴ Te(p,n) ¹²⁴ I ¹²⁴ Te(d,2n) ¹²⁴ I	p ≈ 15 MeV d ≈ 14-15 MeV
⁹⁰ Y*/ ¹⁰³ Pd**	64.1h/17d	β ⁻ = 2.28 MeV/ γ=0.357 MeV, Auger electron = 20-22 keV	¹⁰³ Rh(p,n) ¹⁰³ Pd ¹⁰³ Rh(d,2n) ¹⁰³ Pd	P ≈ 21 MeV P ≈ 15 MeV

*^{99m}Tc, ¹⁷⁷Lu, ⁹⁰Y, ¹³¹I: very good commercial availability; ** Being an Auger electron emitter like ¹²⁵I, we suggest e.g. ¹⁰³Pd as rare alternative Auger electron emitter and good replacement for ¹²⁵I which itself is a reactor based nuclide.

E.g.: The in vivo theranostic approach: ¹⁷⁷Lu-PSMA-617

50 Years – Research for A Life Without Cancer

The in vivo theranostic approach: ¹⁷⁷Lu-PSMA-617 Complete radiological remission PSMA-617 Ideal for 44Ga-PSMA-11 177Lu-PSMA-617 177Lu-PSMA-617 ⁴⁴Ga-PSMA-11 for P\$MA-RLT PET/CT (MIP) Planar scan (GM) Planar scan (GM) PET/CT (MIP) ce Ga 177 1 Prestaging Therapy cycle 1 Therapy cycle 2 Therapy monitoring prospective 150 MBg 3.4 GBa 4.0 GBa 150 MBa elinical trials 07/2014 03 02 2014 05.05.2014 12/2013 needed PSA 8 ng/mi PSA 4.6 ng/ml PSA 14 ng/ml PSA 38,0 ng/ml

Kratochwil C et al. Eur J Nucl Med Mol Imaging 2015; 42: 987-988. IMAGE OF THE MONTH: January. Benešová M et al. J Nucl Med 2015; 56: 914-920. SNMMI IMAGE OF THE YEAR 2015

Viplav Gupta DKFZ, Heidelberg	
9/30/2017 Page 27	

Possible Scenarios for future.....

50 Years – Research for A Life Without Cancer

• <u>Case 1</u>

- Holding MC32NI for theranostic radionuclides and purchasing another small compact cyclotron (18/9 MeV) for meeting routine demands of clinics (¹⁸F, ¹¹C, ¹⁵O etc..)
- Downtime $\leq 1\%$
- Space requirement : 40 50 m²
- Could easily be accomodated in FER

ightarrow

- Major manufacturers : GE Healthcare, Ion Beam Applications (IBA),
 - Advanced Cyclotron System Incorporations (ACSI)

P.S.: In a big research center like DKFZ two cyclotrons are not a luxury but a necessity if both (research and routine) concepts have to be gained.

Case 1 (MC32NI + Compact cyclotron)

50 Years – Research for A Life Without Cancer

GE PETtrace 880

IBA Cyclone Kiube

ACSI TR 19/9

Case 2: Cyclotrons available on the market

50 Years – Research for A Life Without Cancer

dkf₇

• 1) ACSI TR 30/15

9/30/2017 | Page 31

Decommissioning

				li anti anti anti anti anti anti anti ant			1			
ensity of Concrete	2400	kg/m3								
	Objekt	Form	Upper breadth (cms)	Lower breadth (cms)	length (cms)	height (cms)	Volume (cubic meters)	Weight (tonnes)	Number	Total Weight (tonnes)
	A	Trapezium	49	32	595	52	1,25307	3,007368	48	144,353664
	A1	Trapezium	49	32	830	52	1,74798	4,195152	43	180,391536
	В	Cuboid	50	0	500	50	1,25	3	41	123
	С	Cube	50	0	50	50	0,125	0,3	122	36,6
	D	Cuboid	98	0	100	197	1,9306	4,63344	5	23,1672
	E	Cuboid	100	0	50	100	0,5	1,2	161	193,2
	F	Cuboid	50	0	24	12	0,0144	0,03456	14	0,48384
	G	Cuboid	50	0	200	50	0,5	1,2	205	246
	Н	Cuboid	50	0	100	50	0,25	0,6	350	210
	I	Cuboid	50	0	400	50	1	2,4	21	50,4
	K	Cuboid	50	0	250	50	0,625	1,5	41	61,5
	L	Cuboid	25	0	100	50	0,125	0,3	18	5,4
	M	Cuboid	30	0	50	100	0,15	0,36	5	1,8
	N	Cuboid	20	0	28	15	0,0084	0,02016	61	1,22976
	0	Cuboid	20	0	14	15	0,0042	0,01008	4	0,04032
	Р	Cube	20	0	20	20	0,008	0,0192	34	0,6528
	Q	Cuboid	25	0	25	12,5	0,0078125	0,01875	31	0,58125
	R	Cuboid	50	0	50	75	0,1875	0,45	7	3,15
	Y	Cuboid	50	0	50	175	0,4375	1,05	1	1,05
	Z	small stones	15		25	25	0,009375	0,0235	592	13,912
							Total		1804	1296,91237
		A				A.	Total		1804	1296,91237
	2	small stones	15		25	25	0,009375	0,0235	592	13,912
			20			1/5	0,4375	1,05	T	1,05

Division 9/30/2017 |

Page 33

- Dec 2018/Jan 2019 Movement to REZ, stop production, decay time.
- Dec 2019 2024 ?? Demolishing the existing building and building a complete new Building with GMP Compliant
- 2022 2024 Application for a new Cyclotron, commissioning
- 2025 onwards After acceptance test, restart of new cyclotron operation
- In the meantime, constant looking for interim solutions to carry forward our research program. Getting protons from somewhere Image

- ¹⁸F Godfather. Cant be replaced
- ⁶⁸Ga Needs production from cyclotrons. Solid targets ?
- ²²⁵Ac Targeted Alpha therapy. Has to come sooner or later. Long story. Finance ? Radiochemists?
- ${}^{44}Sc Could$ also provide back up to our cooperators in PSI. Transportation is feasible due to \approx 4h t_{1/2}

CEREES!

clarz.

