

Status of a new 18 GHz ECRIS HIISI

T. Kalvas, H. Koivisto, O. Tarvainen

Department of Physics, University of Jyväskylä

23.9.2017, 40th European Cyclotron Progress Meeting, INFN Legnaro

Space radiation environment

Cosmic rays

Solarwind particles

Cumulative effects

- Total Ionizing Dose (TID)
- Displacement Damage (DD)

Single Event Effects (SEE)Single Even Upsets (SEU)

- Single Event Transients (SET)
- Destructive events

Particles trapped in magnetic field

- Induced charge: One electron-hole pair per 3.6 eV
- Electronic stopping power

dE/dx (keV/ μ m)

can be used to estimate the ionization charge in the active region

• Normalized by target density the stopping power or Linear Energy Transfer (LET) is given in units

MeV·cm²/mg

Data from SRAM-based reference SEU monitor R. Harboe-Sørensen, et. al., IEEE Trans on Nucl. Sci. 55, 3082 (2008)

In space very high energy particles penetrate through space craft and components.

In ground testing particle energy is more limited. Delidding and/or wafer thinning due to backside irradiation may be needed.

Jyväskylä lab

9.3 MeV/u cocktail

16.2 MeV/u cocktail

Xenon production on ECRIS

UNIVERSITY OF JYVÄSKYLÄ

New 18 GHz ECRIS HIISI

Project started in 2013

Parameters from SUSI known to be work for sufficient production of Xe⁴⁴⁺: $B_{inj} = 2.82 \text{ T}, B_{min} = 0.46 \text{ T}, B_{ext} = 1.56 \text{ T}, B_{rad} = 1.36 \text{ T}$ $P_{RF} > 3 \text{ kW}$

These magnetic field values are difficult, but possible to reach with conventional normally conducting coils and permanent magnet hexapole.

Radial field

Reaching $B_{rad} = 1.36$ T with permanent magnets is very challenging:

- Refrigeration increases intrinsic coercivity \rightarrow high B_r grades
- Remanence: 5 % increase from +20 to -20° C.

Axial field measurements

Measurements of field on axis match well to simulations. Maximum measured field of 2.753 T @ 0.9 mm from biased disc. Extrapolates to over 2.80 T on surface.

Measurement 1 mm from chamber (r=54.5 mm) wall shows 1.275 T average @ 20 C with current N40UH material.

Microwave plasma heating

400 W 11-18 GHz TWTA

2.4 kW 14 GHz Klystron

2.4 kW 18 GHz Klystron

Beam extraction from ECRIS plasma designed with IBSimu-software

Beam enters the dipole with 130 mm gap.

First focal point after the separation.

Magnetic stray field

Magnetic shielding

Beam results

Commissioning with beam started in May 2017

- The total plasma-on-time so far is roughly 100-200 hours
- Limited by magnetic interference to operational ion sources

Records with O7+:

95 μA with 300 W 175 μA with 600+100 W

18 GHz 250 W + 14 GHz 100 W:

O2+	30 µA	
O3+	82 µA	
O4+/C+	240 µA	
05+	210 μΑ	
O6+	250 μΑ	
07+	53 µA	
	•	

Overheating

Overheating

Overheating

Thank you