

STATUS OF THE TEXAS A&M RADIOACTIVE BEAM PROJECT D. P. May, G. Tabacaru, J. Ärje, G. J. Kim, & B. T. Roeder

FACILITY CAPABILITY and ACTIVITIES

K150 CYCLOTRON + ECR + H

K500 ECR1 ion source – useful for producing analogs to RIBs

Looking toward extraction

Radial port

And we are constructing an ultra high-temp oven, a copy of the one on the K150 ECR2. So in addition to gases we can choose species from:

A low-temp oven

A hi-temp oven

Or a sputter fixture

Focus on the lightion guide (LIG) and the charge-breeding electron-cyclotronresonance ion source (CB-ECRIS).

A spectrometer for heavy-ion guide has not been chosen.

Steps for Radioactive Beams from LIG

- Intense proton beams from the K150.
- •High production of radioactive 1+ beams from LIG.
- •Efficient boosting to high-charge states.
- •Tuning of the K500 and beam lines for RIBs.

K150 proton beams

With LN₂ intensity of 6 AMeV ⁸⁴Kr²³⁺ beam increased by about a factor of 30, but cryopanel still not connected to coolant source – LHe refrigerator being refurbished.

LIGHT-ION GUIDE – Gabriel Tabacaru and Juha Ärje

SPIG + CB-ECRIS Line, Accel-Decel – first trials

RF-only Sextupole Guide following JYFL design Above shielding chargebred beam of Ga-64 12+ at 23 pps

Smaller flux of Rn-220 29+ (from thorium)

- ²⁷Al foil (1/4 mil thick), thin ¹²C (100 ug/cm²) in target chamber
- MARS arm at 0° (With arm at 0°, velocity filter~constant, only tune rigidity).
- Δ E-E silicon telescope (64 μ m + 500 μ m) for particle ID, measurement

TUNING THE K500 AND ITS BEAM-LINE FOR RIBS – George Kim and Brian Roeder

First use charge-bred rubidium beam

Effort to detect accelerated RIB

- MARS setup
- Day One Calibration with ⁶³Cu at 14 MeV/u from ECR1.
 - Tuning
 - Calibration of MARS target detector
- Day Two Measurement of ¹⁶O³⁺, ⁶⁴Ga¹²⁺ charge states from ECR3 @ 14 MeV/u
 - Tuning
 - ¹⁶O measurements
 - Shifting the K500 frequency
 - ⁶⁴Zn, ⁶⁴Ga measurements

MARS settings with ⁶⁴Zn²⁹⁺, ⁶⁴Ga²⁹⁺

04-Oct-2016 07:56:56

•Saw a peak around 890 MeV consistent with ⁶⁴Zn.

•⁶⁴Zn peak was still present at about the same rate with SPIG or proton beam off.

•High rate of ⁴⁸Ti²²⁺ present. Why? (Al alloy 7075)

•No indication of ⁶⁴Ga at +9 kHz shift of K500 frequency.

With small K500 frequency shift

•For 29+, observed a "shoulder" on the Zinc peak. Saw about ~100 counts above ⁶⁴Zn background "tail".

•Would be consistent with a ⁶⁴Ga observation.

•Could not separate species better with this detector setup. Indication not 100% clear.

•Need more Ga intensity!

Test of direct SPIG injection into CB-ECRIS – Juha Ärje

Alkali ion source (HeatWave) and 0.4 meter SPIG

SPIG condition after running

2.5 Meter SPIG

More tolerant of alignment error and also allows for multiple pumps and apertures to limit helium flow into CBECRIS

Next

•Design and detail 2.5 meter SPIG.

•In the meantime, investigate further the accel-decel option for 1+ CB-ECRIS injection.

CB-ECRIS Injection scheme from Richard Vondrasek – already tested as ion source.

If this is unsuccessful, the 2.5 m SPIG will definitely be constructed