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The original purpose of NEPIR:

study of radiation damage effects in electronic devices and systems,
induced by flight-altitude and sea-level atmospheric neutrons and

lar meratnnc
Sotar-protons:

TOOLS
QMN: a source of quasi mono-energetic neutrons (QMN) with a controllable energy
peak in the (20)35-70 MeV energy range.

ANEM: (Atmospheric Neutron Emulator) an intense source of fast neutrons (E > 1
MeV) with a continuous energy distribution similar to that of atmospheric neutrons
found at flight-altitudes and at sea-level in the 1-65 MeV energy range.

PROTON: a general purpose low intensity beam of direct protons with variable
energy in the (20)35-70 MeV range.

Neutrons for electronics

QMN Energy range Essential to study energy Neutron flux at test Angle
discrete 20-70 MeV dependencies point is user controlled,  correction
@ (cross-section vs energy curves) up to 10°ncm? st @ |

© ©

ANEM Energy Before full energy tests at very Neutron flux at test point is user

continuous cut-off high-energy facilities like Chip-IR controlled, flux E, > 1 MeV at test point
70 MeV (ISIS), it is useful to make flexible uptod ~10"ncm?2st

studies/checks for unexpected
@ sensitivity to lower energy neutrons @

® - O
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SPES laboratory layout

Underground floor of the SPES laboratory (in grey the existing walls).

The floor of the laboratory is 4 m below ground level.
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Layout of NEPIR

I\C ) SPES cyclotron hall
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Floor plan of the NEPIR facility (4 m below ground level).



Quasi Mono-energetic Neutrons

U Study energy dependent neutron-induced effects

(e.g. measure the SEE cross-section vs energy curve)

O Multi-disciplinary interest

g
o
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Neutron Fluence [x10° n/sr/  C/MeV]
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Neutron yield angular dependence

thin Lithium
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The “good” truly mono-energetic neutrons are
produced mainly in the direction of the proton
beam (forward, 6 = 0); wrong-energy neutrons
are not as directional.
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Neutron yield (n MeV-1 pA-1 srl)

Angular
dependence at
E =70 MeV

proton

Kamata S., Itoga T., Unno Y., Baba M.
(CYRIC ANNUAL REPORT 2005)

Journal of the Korean Physical Society, Vol.
59, No. 2, August 2011, pp. 1676-1680
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“Wrong-energy tail” correction
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O The corrected 0° peak
with Li 1s sharper and closer
to the proton beam energy.

J 30° subtraction works for
both L1 and Be with 70 MeV
protons.
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Multi-angle collimators °

I-Themba multi-angle collimator

The number of neutron-induced effects due to
forward going neutrons can be corrected by
subtracting the number of effects at angles
(typically in the 15°-30° range). tad

150 iTHEMBA
s multi-angle
= _ collimator system

TEal
= .‘-'-._‘.‘

L dump Target
e chamber

lene Bending magnet

The 7Li(p; n)7Be reaction is employed
to produce QMHN in 25-200 MeY energy

Steel range.

A2 m thick steel collimator with
openings at 6 = 0°, 4°, 89, 12° and 16°
- 300 shapes 10 cm x 10 cm give quadratic
concrete beams at 8 m. The collimator is lined

by a layer of borated wax and
polyethylene.

45°

. 188

Shiftrespect

to 07 direction
R Ax = R(l —cosé)
& 45°
P itk Al 15°

—— edata can be taken simultaneously at 0° and one or two
B, o standard angles (say 15° and 30°)

e ke « flexibility for intermediate values
collimator * but challenging to design magnet/target system
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QMN comparison

Comparison of NEPIR QMN with existing QMN beams around the world.

Distance (m) of
target to the test
point

Energy of the

Mono-energetic neutron

protons (MeV) (peak) flux at the test point

TIARA (Japan) 40-90 12.9 ~3.5-5 x10% n cm2 s'1 for max 1-3 pA
CRYIC (Japan) 14-80 1.2 108 n cm2 for 3 pA
RCNP (Japan) 100-400 10 10* ncm=? s for 1 A
iTHEMBA (South Africa) 25-200 8 1-1.5 x 10* n cm-2 s for typical 3 pA
ANITA (Sweden) 25-200 3.73 ~ 3x10° ncm2 s for max 5-10 pA
NFS (France) UNDER CONSTR. 1-30 5 ~1,2x10% ncm2 st for 30 uA, 30 MeV (calc.)
NEPIR Li target, 4.7 mm thick 30-70 3 ~5x10% ncm=2s1for 1 uA, 70 MeV

NEPIR Be target, 4.0 mm thick 30-70 3 ~4.5x10* ncm?s?tforlpA, 70 MeV

Target current for LNL QMN to be comparable with ANITA (TSL, Sweden): 10 pA
Foreseen flux: ~5x10° n cm2 s for 70 MeV protons, using a Li target 4.7 mm thick

After the shutdown of the ANITA facility (TSL - Uppsala, Sweden) the i-Themba facilty
(South Africa) is the new, de-facto reference QMN source, with a flux of ~1 x 10* n
cm2 st (1 order of magnitude smaller than ANITA). In this case, the target current for
LNL QMN is 1 pA
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Interest

QMN fields with E, > 20 MeV
are important reference neutron fields

Used to study energy dependent
neutron interaction mechanisms with matter

* high-energy and nuclear physicists (data; cross-section measurements; MC development);
» manufacturers of radiation instrumentation (energy response and calibration);
* radiation physicists (studies for: fast neutron treatments; modeling of exposure of patients

to secondary neutrons at proton accelerators; bench-mark shielding experiments®).

USERS:
» electronics industry for critical applications in hostile neutron fields (sensitive
electronics anywhere, airlines, accelerator halls in hospitals and industry, space ...);

» electronics (ASICs) for HEP and nuclear physics experiments and space applications;
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m
l low energy deflected

particles

\ Study radiation damage effects in electronics
L induced by flight-altitude and sea-level
- (g atmospheric neutrons and solar protons.
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n : o i
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ANEM: a continuous energy neutron source

A novel rotating composite target made of thick Be and W. .
AW disk and a Be circular sector rotate on a common water cooled hub and p Mastinu
alternatively intercept the beam. The effective atmospheric-like neutron spectrum in (LNL)
the 1-65 MeV range is composed directly without the use of moderators.

‘ Off axis proton beam, gaussian ‘

%\ ‘E Broad evaporation peak
. flat E=70 Mev| §. tmivw
B s
E L ‘.._RR,./\M g %
; ]
) Be23% 2 ;
e o Pb 77% =
07 Points simulation BePb
At 6m from < Red curve JESD89A fit 1
R [
composite g e
. target 3
g 1E-8
Thickness
W: 5 mm (beam stopping) .
Be: 24 mm :
ya 1 10

Neutron energy, MeV
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ANEM white spectrum

The neutron differential energy spectra at accelerator electronics test facilities used for accelerated neutron
SEE testing. The JEDEC reference spectrum is the black curve, multiplied by an acceleration factor F = 10°.

107 - . <

\ reference atmospheric neutron spectrum
106 i i (JEDEQ89A) x 10°

104 |

108 |- 1 Chi
simulations | Chip-IR (ISIS-RAL)

ANITA (TSL)
102 |measured < TRIUME
LANSCE

11 | simulations. ANEM (LNL) Y A A R

Differential neutron fllux {(n cm? s* MeV 1)

100

2/3 of the full neutron spectrum foroton =~
1 l Is in the 1-65 Mev range I

1 10 100
neutron energy (MeV)
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ANEM performance

The desing of the ANEM target was modeled

Beryllium

with ANSYS to calculate the maximum

Beamline axis

Movie clip of the

tolerable thermo-mechanical stress.

dddd

. ] - - temperature
The calculations indicate that ANEM can distribution during
Tungsten
. " warm-up.
conservatively handle a 70 MeV proton beam

Thermo-mechanical
model intercepting the
rotating proton beam

(gaussian distribution, 1cm FWHM) with a :
current up to 30 YA (2.1 kW) with a rotating = .

speed of 120 rpm.

Temperature sampling poinis
;sm.gzw.m; e

Equivalent Stress

Thermal performance modeling Unit: MPa

= 1102.5 Max
£89.05

FS
~oo
w

L0 00 L0 L0 LD B B B
LEENEBEERG
58858
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SEEER=BBE

888

RIRIRIRI IR L2 LI LD

3

Beryllium

Tungsten X Beam spot

‘ position Power deposition in the Be
il sector, the bragg peak is visible A dynamic model of the stress induced by
the thermal expansion is being developed.
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ANEM prototype

The ANEM prototype will undergo thermal tests in the next months

7N oo Thethermaltests will use a 10 kV electron beam,
]; B - Maximum current 1 A
) - Beam current controlled by varying cathode

=< yoltage;
| - Electron emitter shaped to give and initial rough
focusing
- Flange mounted (CF 3 3/8) gun assembly;
- Independent magnetic focusing coil (by Danfysik):
minimum beam spot 1 cm? (gaussian);

Viewport

Altair electron gun
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Dose calculation geometry

Borated polyethylene
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Fluka simulation geometry for the calculation of the uka ulation g _
backstreaming neutrons form the QMN target to the bunker and irradiation hall (vertical
cyclotron hall. section through the beam axis).
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Dose rate in the experimental hall

ANEM

Dose equivalent (uSw /h fuA)

1 T T T L 108
1000 -
106
500 4 pq104
g \
102
0 i -
i 100
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1
-1000 -500 0 500 1000 1500
cm
400 I —
By.| ACCESS maze
200 B
e ° S

1000

15

Prompt ambient equivalent dose rate delivered by the QMN

target with a proton beam current of 1 uA.
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Backstreaming neutrons: prompt dose rate

Ambient equivalent dose [uSv/h/uAl (offs. 0)

Prompt ambient equivalent dose delivered by
the ANEM target in the cyclotron experimental
hall was assessed for different conditions.

A worst case calculation was performed, using wr
“forward” neutron yield from 70 MeV protons on

600 I~

5 mm W (ANEM) (“forward” = as if protons f ﬁnvggfclgltng L“c?u”rtgg f
coming from the right) Sor
NB: At the radioprotection monitors, the worst 200 |
case contribution from ANEM is 1/10 of the dose
rate of Cyclotron itself. T
Side vew Xt
Ambient equivalent dose [uSw/hjuA] (offs. 0)
Dose at monitor position ~ | ——— BNy —
100 pSv/h (MAX), with 1 [ (RoIpE
HAmMp proton current on T |
the target *r i
§ :

-1500 -1400 -1300 -1200 -1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 o 100 200 300

X axis [em]
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Backstreaming neutrons dose: source offset
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Calculations for QMN target:
Proton beam condition: current: 1 uA, energy: 70 MeV, irradiation time: 24 h.

Experimental hall air activation (the considered air is the one filling the whole experimental hall).

Time after end of beam Air activation
0 min 0.02 Bg/g
15 min <0.01 Bq/g
60 min <0.01 Bq/g

Bunker air activation (the one filling the targets bunker).

Time after end of beam Air activation

NOTE: the values reported in this table do not take into
consideration the contributions of the beam dump for the
deflected proton beam.
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Conclusions

k‘lgy NEPIR current status

Q

Funds required to MIUR (Italian ministry of university and
research) to build the QMN (20-70 MeV ) line of NEPIR (will
also host ANEM) and the QMN (70-230 MeV ) target for
TIFPA (Trento proto-therapy center).

an ANEM prototype system exists, with aluminum test disk,
that will be used in the next moths to assess the thermo-
mechanical performance of the device

the basic design of the beam-transport for QMN/ANEM
completed

detailed TDR (shielding, radioprotection issues)

work in progress

Prototype of the ANEM (i
target in LNL, ready for
thermal dissipation test ||
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The end

(Extra slides follow)

BELIEVE IN YOURSELF
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Extra slides
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LINUS: The Legnaro Integrated NeUtron Sources facility

Luca Silvestrin et al. /j

University of Padova and

INFN Padova (ITALY) I N F N
luca.silvestrin@unipd.it Istituto Nazionale
L_/ di Fisica Nucleare
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The Legnaro Nuclear Laboratories

i * The Legnaro Nuclear Laboratories are
wf located in Legnaro (Italy), at 10 km
from Padova.

INFN

Istituto Nazionalg
di Fisica Nuclear¢|

Microbeam 2 MV

Cyclotron 70 MeV

HBS Science Case Workshop April 6 - Unkel



Qutline

Introduction

LINU S A project of an Integrated
Neutron Sources facility for

the INFN Legnaro laboratory

:h? Italian National Institure

IN )
(_ e Of Nuclear Physiscs

e LSNS: Legnaro Slow Neutron Surces

and its subsystems
* NEPIR: NEutron and Proton IRradiation facility
and its subsystems (QMN, ANEM,...)

Extra slides
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LINUS Facility

Compact Accelerator Driven Neutron Sources (CANS) have shown promising capabilities in
bridging the capacity insufficiency and the expanse of cross-disciplinary neutron applications.

LINUS consists of:

Q Legnaro Slow Neutron Source (LSNS) RFQ
LSNS encompasses state-of-the-art Accelerator-driven, Brilliant, m )
and Compact Neutron Sources (ABC NS) and cross-disciplinary R&D. It i =
'« | f
delivers cold, thermal, and epithermal neutrons. \DL_Er

Q NEutron and Proton IRradiation (NEPIR) complex.

NERPIR is driven by the high power 35-70 MeV proton cyclotron of the SPES project and

consists of four subsystems:

.  QMN: delivers quasi mono-energetic neutrons in the 20-70 MeV range
II.  ANEM: delivers atmospheric-like neutrons in the 1-70 MeV range
lll.  SLOWNE: a special applications “slow/medium/fast” neutron source

V. PROTON: a direct proton (35-70 MeV) irradiation line (not this talk)
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Background
Practical general-purpose neutron facilities are of two types:
1. research reactors (fission reactions)
2. accelerator-driven sources (non-fission nuclear reactions)
= Large High-energy accelerator spallation sources

4 Compzact low energy aceelerators (non-sozllaiion sources)

Research reactor

contral and

5 | _.
>
Dypsa
safety rods : ‘I‘ﬂ‘
a7l
heavy ‘ | ,
cccccc te A E'E
\ )
-

[
~.—
— 70 MeV linac

@ 2013 Ensyslopadia Britanniza, Inc

» Reactor sources play an essential role in materials characterization and other research
purposes, but some are going into retirement (Berlin; Orpheé;...). © — @

» Present and future high-energy spallation sources (ISIS at RAL; ESS;...), in spite of their high
neutron yields and sophisticated instrumentation achievable at great costs (expensive),
they will barely fulfill the demands of the large neutron user community for materials
research, let alone of other emerging important fields and disciplines. @ —> @ —> @
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LSNS Is a green-field (no constraints) project

GOAL: ensure an expansive neutron R&D landscape and a thriving community of neutron users.
It will combine:
O cutting-edge technologies achieved at LNL

» high-power, high-current proton RFQ proton accelerators;

* neutronics technologies;

« High power Li and Be production targets (eg. MUNES).

.

= === Be target for BNCT
ot (MUNES project)

- T

Trasco accelerator:
RFQ, 5 MeV 40 mA _

Microchannel cooled thin
target. Performance better
than 3.5 kW/cm?2

—— —

= ——

=

= —

==

= =
E

——

—

= =

= —

- -

O optimizable infrastructure of various neutron beamlines and end-stations for a suite of R&D

user facilities using cold, thermal and epithermal neutrons.
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Modular facility structure

RFQ
Proton beam PSDS
| (Pulse Selection and Distribution Station)
PSDS
S @ CNTS (Cold Neutron Target Station)
LENOg' e Be target
L] e paccobriin « Cryogenic moderator of solid methane
pdisae « Reflector (graphite or water)
L » Up to 6 ports to expermental halls
CNTS 6’@1:\ O TNTS (Thermal Neutron Target Station)
- T~ » Identical design to CNTS but with water
C (abient temperature) moderator
* Initially three ports
O LENOS (astrophysics)

e Modular structure

* Mild radioactivity by low-energy protons (<5 MeV)

e Both Short Pulse (SP) and Long Pulse (LP) options

* Cryogenic and gas handling systems for hydrogenous moderator

CNTS and TNTS are ideal for experimental validation of novel moderator systems
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Time structure

1“1 l‘”z
200ns, 120K 12 A conceptual scheme of
O - concep
50 2500 distribution of proton pulses of
_______________ different time structures to the
repeat every 20ms (50Hz) epithermal-, thermal- and old
~10 ps> neutron applications. The time
axes are not in scale, numbers
_______________ are ballpark figures.
repeat every 40ms (25Hz)
- 500 us >
Y

buncher ~2ns

LENOS In the TOF mode we assume a chopper, upstream of the RFQ, will pulse
Li target, no moderator the proton beam at 125 kHz with a pulse width (FWHM) of ~200 ns.

Y These short pulses are nominally delivered to the LENOS target station and

defocus to 10cm x 10cm beam shorten further to 1-2 ns by a buncher.
thermal neutron source . ] L
Be target, H,O moderator The following time appropriation takes place:

Y 1. aclock starts at t, for the accumulation of the short pulses to achieve a

defocus to 10cm x 10cm beam . . - - . -
S ——— pulse width of ~10 us in conjunction with the defocusing of the beam

Be target, CH, moderator to a cross-section of 10cm x 10cm.

2. Afterward this proton pulse is delivered to TNTS. This process is to
repeat every 20 ms so as to enable a short pulse (SP) neutron source
running at 50 Hz.

Proton beam
Pulse and Selection
Distribution Station

3. After each SP the clock starts at t, to accumulate a long pulse (LP) of
~500 us width, defocused, then to feed the CNTS. This process
repeats every 40 ms for a LP cold neutron source running at 25 Hz.
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Schematic structure of the target stations

In the case of the CNTS, a

| cryogenic system and a gas
handling system (not shown) will
cool the moderator medium (e.g.
solid methane) to ~10 K.

Target station core

Cold neutrons target station layout

Neutron

Moder
beams

A schematic layout of the target station’s N
inner core, showing a defocused proton
beam incident on a thin target _(Be) and a 4/ " Target
moderator above for generation of cold | ~Z .-
beam |} Reflector

neutrons which exit through the beam ports.

HBS Science Case Workshop April 6 - Unkel Luca Silvestrin luca.silvestrin@unipd.it



Schematic layout of the LSNS facility

PSDS .| TNTS
! " "« High-Intensity Powder Diffractometer (HIPD)
Room for ' » Multi-Purpose Materials Interrogation (MPMI)
future . . Ne_utronics, Device and Detector Development
accelerator N\ (NDDD)
upgrades

Gas Handling ~ Cryogenic
System ystem

CNTS

\*Small-angle neutron scattering (SANS)
sGeneral-Purpose Neutron Reflectometer (GPNR)
SANS *Cold-Neutron Imaging & Radiology (CNIR)

“ Cold-Neutron Instrumentation Development (CNID)

Experiment Hall '-.\

HBS Science Case Workshop April 6 - Unkel Luca Silvestrin luca.silvestrin@unipd.it



LSNS numbers

Legnaro Slow-Neutron Source (LSNS) driver

proton RFQ (Eo0n = 0.08-5 MeV, 30-50 mA, 150-250 kW, CW or Pulsed)
|

Cold neutrons Thermal neutrons LENOS Medical therapy
Be-target, Be-target, Li-target, Be-target
25Hz0.5ms LP 50 Hz 0.01 ms SP 125 kHz 200ns Cw
duty cycle ~1/800 duty cycle ~1/2000 bunched to 2 ns SP duty cycle =1

duty cycle ~1/40

B Imaging & _ _
Nuclear L BNCT
Small-angle Neutron o astrophysics (thermal)
scattering Bl interrogation TOF
BNCT
| Neutron
reflectmetry -

Instrumentation
o R&D (neutronics,
polarization ...)

Instrumentatio Nuclear

n R&D B ostrophysics
Activation

(epithermal)
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NEPIR

NEutron and Proton IRradiation facility

QM N A source of Quasi Mono-energetic Neurons with a controllable
- energy peak in the 20-70 MeV energy range; the QMN system would
allow correcting data in the forward direction using data taken at angles
(wrong-energy tail correction technique)

An intense source of fast neutrons (E > 1 MeV) with a continuous
AN EM:: (white) energy distribution similar to that of atmospheric neutrons found
(Atmospheric at flight-altitudes and at sea-level in the 1-65 MeV energy range.

Neutron Emulator):

S L OWN E A high intensity slow/fast neutron source (4r-flux > 1014 n/s) for special

slow — fast neutron applications;

a general purpose low intensity beam (max few hundred nA) of direct
P ROTO N: rotons with variable energy in the 20-70 MeV range.

A
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The original purpose:
The QMN, ANEM and PROTON subsystems will be used for the study of
radiation damage effects in electronic devices and systems
induced by:

o flight-altitude and sea-level atmospheric neutrons (especially)

e solar protons

HBS Science Case Workshop April 6 - Unkel Luca Silvestrin luca.silvestrin@unipd.it



Radiation effects on electronics | Physics of neutron-induced SEE
(1) Primary neutron I,: (2) neutron-nucleus reactions with

(accelerator, cosmic-rays,...) production of ionizing _secondaries
If t (Nuclear Physics)
a neutron -
CMOS

. g oxide layer
(proton) is fast s ees |\ o] snussmion
enough vea _. JIFE , " Silicon nucleus

a Single Event
Effect (SEE)
may occur
(it depends on
where it strikes) I

nucleon

-
ondary ionizing
particle

neutron-induced SEE cross-sections vs energy . .
(4) Charge transport in device (3) Generation of electron-hole pairs
= — (device physics) (radiation physics and solid-state physics)
i Chris Flggtrﬁs?s,ecrhipm)

_ 10
- / f Reference cross-section for
- / |
o SEUjowinr. o 177 77 o =J= g
S oe / / / Soft Errors” such as SEUpset in digital electronics:
§ ’ / /SEutypical / n:
E ; s SEL _ ) .
/ oy = 1014 cm?/bit,
2 / / SEU,,ig,,,,,/

" N,... per device = 4 x 106 T

f / J bits P =
Gl “-.:u 76
1 10 100 1000
Neutron energy (MeV)
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22 Sept. 2017 - Legnaro

QMN

the Quasi Mono-energetic Neutron source

Neutron Fluence [x10° n/sr/ it C/MeV]

40th European Cyclotron Progress Meeting

E = 50MeV
1.0 )
0.5 {
0.0 - —-“:ﬁfd"1 .
104 E_= 65McV A
051 )
0.0 . — \ T
1.0 E = B0MeV ,-':."_
05 it
o0 —/ A\

0 20 30 40 50 60 70 80
Neutron Energy [MeV]
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QMN

8 E = 50MeV ﬁ
‘?l: 0.5—
% o:o s ; : L T -
*§ 10 E,= 65McV A
=
§ oo =l Energy spectra of QMN neutrons in the forward
E= 1.04 E = 80MeV - - ag=
o direction at the TIARA facility for three proton
I DBl heam energies.
10 20 30 40 50 60 70 80

(=]

Neutron Energy [MeV]

neutron-induced SEE cross-sections vs energy

O  Multi-disciplinary interest | amsawn
;8308 = [/ /
O Energy dependent wl [
neutron-induced effects : [/ =
(e.g. measure the cross-section ‘ 2 / / SEUW/
VS energy curve) 0 —
0.0 —M —-/

| / w Neutronener:; (?“;;S/c; 1000
0 Angular dependence J \

. ITHEMBA-like (fixed angle collimator)

. RIKEN-like (variable angle collimator)
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The supplementary shielding is not shown
SPES cyclotron hall

x'“““tSWltchlng magnet
“\Pmmn energy degrader

Defl. magnet
SR RS B1 1

fi-leme | HE
SO ; ‘\'Fe culllmatur IlI I---.-‘
Ny 1 --—l b S ey D !
R hamber for prﬂtun irradiation

L I=EW"

rrrrrr

£
'''''

¢ ' f IIr :
AR Supplementaw
! 30° R shleldlng
' r ! |
P ¢ not shown
' r b K i

: 'rlr F; :‘ :r ]
= ' -/Shifting neutron absorber



The supplementary shielding
SPES cyclotron hall

x‘“‘“HSwmchlng magnet
“\-men energy degrader

~LARAMED
bunker

-ml o R R T A i
for prﬂtun |rrad|at|un

I
ow He i

IL
S




(ongoing) Shielding calculations

~ Girld

Gricd Lvel — mE |
Lattice Lovel [ W |
Crosshais: 1

Teat Background [
Short cut: F2

General Font:  fioedBx13

Gried Fent: foreeBa13

00 400 300]
y: 7125266429 o 44.4249719 T

-------

Bunker vertical cross section
through the beamline

Fluka simulation: dose map, vertical cross
section through the beamline
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O A 30° collimator is likely to be the standard angle for correction, but this must be
verified for the 20 «-35-70 MeV energy range. MC are not at all reliable in this
energy range.

O both thin Li and Be (few mm) targets will be available (energy deposition in target
~ 3 MeV — power ~100 W)

Simple Be
design can
safely handle
200 W

d 1-2mm Be (similar FHWM as Li) will be used for high flux (> 3 x 10° n cm=2 s1),

The neutron yield can be kept high with more proton current (up to 30 microAmps)

with test point at 3 m downstream of target o shutter s

System Stopper

=

— | Radiation
Shielding
System

-

1 Support
Frame

O the beam dump will be like the one used for SPES

tests (for full 700 kW power), or a scaled down version.

Beam | § —
positioning | —
system

Size: 000 X 1500x 2100 mm
Weight: 3360 kg
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NEPIR experimental hall

[} Existing (empty) NEPIR

\ experimental hall
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ANEM

| Atmospheric Neutron EMulatc




neutrons at sea level

Atmospheric neutrons

Energy distribution of fast (E>1MeV)

e —— ——— The standard reference
103 b~ _ i spectrum used by the
» - Data points by Gordon (2004), sea level, i i
— :N“-E'-:"‘w. zlgg:\in\grk city, outdoors, mid-level Solar JEDEC Solid State
> 10* | %‘: . e ft 1089 dacheg . Technology Association,
= ‘.."h-':“ht-..‘_ JEDEC fit 2006 continuous an mdependent
“» 105 e - semlconduqtor engineering
g I trade organization and
L 10 F . standardization body.
% 107 } ®(E>1 MeV) =21 ncm=2hri(¥ i
- L | | | - .
% 108 ; Of these: _ Typical l/ailgifor 2SIEU
@ O T« 42% are in 1-10 Mev range ] Oplateau —I ng it
L o | *47%are in 1-20 MeV range ] gives alow SEU rate
5 10° [ .65%are in 1-65 MeV range N ~4 SEU/(month - 8 GByte)
1070 | — . A\
100 101 107 10° 10¢
Neutron Energy (Me)\2
_ _ Boring! | need to N
(*) At flight altitudes the flux speed these tests up... ) D
shape is similar and ~300 times | want an accelerator! §\' \J’
more intense. C /k

HBS Science Case Workshop April 6 - Unkel Luca Silvestrin luca.silvestrin@unipd



The neutron differential energy spectra at accelerator electronic test facilities used for
accelerated neutron SEE testing. The JEDEC reference spectrum is the black curve
multiplied by an acceleration factor F = 10°.

reference atmospheric neutron spectrum
(JEDEQS89A) x 10°

Differential neutron fllux (n cm~? s* MeV1)

] L
ip-IR (ISIS-RAL)
ANITA (TSL)
102 | — TRIUMF
LANSCE
10" — ANEM (LNL) —> using SPES 70 MeV protons,
| HEER loroton ~ 10 pA (P<1kW)
101] 3 il S ) M S A I 5 | S RS M WS O 53 M i b O S TR N S -
101 || EEE | |
1 10 100 1000

neutron energy (MeV)
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ANEM: a continuous energy neutron production target

Minimum Design GOAL: At 6m distance and l,.,,, = 30 pA (2.1 kW) the flux of neutrons with E >
1 MeV is ~10° times the natural one in the 1-65 MeV range, comparable with the highest factor to

be used at Chip-IR facility.
A novel rotating composite target made of thick Be and W.

A W disk and a Be circular sector rotate on a common water cooled hub and alternatively
intercept the beam. The effective atmospheric-like neutron spectrum in the 1-65 MeV range is
composed directly, without the use of moderators.

L of P. Mastinu (LNL) | ¢ axi
»  Off axis

proton beam

Thickness
Be: 24 mm (*)
W: 5 mm

Target prototype almost ready for
thermal test with electron-gun

(*) The Be sector does not stop the protons (to avoid damage); most of the protons pass through
without causing nuclear reactions. The emerging low energy protons are stopped by the W disk.
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Thermal simulations

Bragg peak energy
W full disk, 5 mm thick , beam power 3.5 kW, rotation 1 Hz deposition included

ANSYS

Temperature = ANSYS
P / R15.0
1837 — e

Baasaoa
=P

2NSEmRKES
F=Y T N RTE ML Y LN T AT )

P B o 3 1 O O~ Q04D
NN O Lk

€]

Rotating
beam

!
A () . i

8 o050 0900 =)
— —

Artifact of discrete time steps

Thermal map, snap-shot at regime with 2Hz
rotating beam

e Water inlet temperature : 18°C;
e Water inlet velocity 1m/s

e W disk

e gaussian beam spot FWHM =1 cm
e beam Power 5 kW

e rotating beam (10 rev/sec)

the lliquid cooling system
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Stress simulation

Snap-shot at regime with rotating beam

Max stress for different power, compared to

fatigue limit (for «infinite» cycles)

1400

1200

1000

©
o
o

Stress (MPa)

ey
o
o

200

0

1 Hz - full disk
Z -

/ 1183

g

933

It

Tungsten full disk, 5 mm thick
Rotation frequency 2 Hz
Deposite power: 3.75 kW

ax stress

\
~ ~_ http udelft.nl
/I 795
/ ~—
2 Hz tiles

/

/|

|

3500

Beam Power (W)

4500 5000 \ 5500 6000 6500 7000
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Maximum deliverable power
with tiles configuration 5 kW

/

555555
111111
55555

Y Max stress
630 MPa

5 mm thick
Rotation speed: 2
Beam power:




QMN and ANEM numbers

To study neutron effects on electronics

QMN Energy range Essential to study Neutron flux at test Angle
discrete 20 «<-35-70 MeV energy dependencies point is user correction
(cross-section vs controlled, up to
@ = @ energy curves) ~b5x10°n cm?s1 @
Complementary
with Trento for @ o @ @
QMN in 70-235
MeV
ANEM Energy Useful to make flexible Neutron flux at test point is user
continuous cut-off studies/checks for controlled, flux (E, > 1 MeV)
AR5 MeV unexpected sensitivity to at test pointup to¢ ~107 n
lower energy neutrons, cm2 sl
before performing full energy @
tests at high-energy facilities
like Chip-IR (RAL). ~ 10% higher than the
natural flux at sea level in
| @ 4 @ the 1-65 MeV energy range

Luca Silvestrin luca.silvestrin@unipd.it
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NEPIR fast neutron line UPGRADE

Chicane to:
« avoid neutrons towards cyclotron
* have test point at same distance from
floor and ceiling (minimize albedo)
« use degradator for lower energy neutrons

SPES hall A9, side view

The ANEM target
system will exchange
position with the QMN
multi-target system and
will share the Q° line.

- —

- 4

& 4 =l 3 I
& L . o+ L & 4
& - L g ’ « .
& i "rJ_ k, 4 - 5 \ £. i ‘ﬂl s 4
» [dea of M. Maggiore
& -
& 550
[
S t : Al
1185
r/T\ neutron Beam ne level /
A o/}
ground level ':]“ - i
Tlen = fast neutron targets =
| B rase Hoor tevel QMN/ANEM B
o . B W1
& 4 beam line lavel %
o) )
£ =l ereersee— = r 111 A o I
a_ o
b = = - '

At the test point, the neutron beam is 1.50 m from the false floor (3.91 m from
the bottom cement floor). The optics: two dipole magnets, two quadrupole
doublets, a single quadrupole, and a bending magnet for the spent proton beam.

The supplementar
22 Sept. 2017 - Legnaro

shielding is not shown.

40th European Cyclotron Progress Meeting

Luca Silvestrin luca.silvestril

@unipa.



UPGRADE 2: flight path extension

An extension of the Time of Flight path up to ~ 20 m (maybe more by
moving service road) outside of the laboratory is possible.

Supplementary shielding not shown

service road f‘;'-‘?"- b e e R gﬁmm |
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SLOWNE

the slow neutron source

Neutron
beam port

171 cm

4

Proton beanﬁ

BSA identical to the alternative configuration developed with
Be(p.xn) spectra at 4 MeV, but for the D,O moderator region
thickness "a” increased by just 1 cm. Same reflector sizes

40th European Cyclotron Progress Meeting Luca Silvestrin luca.silvestrin@unipd.it (¥

22 Sept. 2017 - Le



SLOWNE

Thick (beam stopping) W-target for high neutron intensity applications.
The target is designed to handle full SPES power (50 kW).

Idea of J.
Esposito (LNL)

14.3cm

10.0cm

4.5cm

B H,0
1 Al
Cw

9.0cm

FARETRA W neutron converter
cross sections
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Based on the “Low’ Power Beam Dump
of IFMIF project
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A moderator system is then used to shift the energy of the

neutrons and shape the energy spectrum to resemble the desired one.

Examples of special applications:

1. FAst REactor simulator for TRansmutation studies (FARETRA)
2. Atmospheric neutrons effects (not only terrestrial atmosphere)
3. research on moderators
4. test novel ideas in neutron science technigues
Pb gamma shield
Proton (inner) Poly-B Proton beam pipe H,O target cooling
neutron shield feed throughsystem

beam pipe

. Conical Wtarget
Alunimum outer

spectrum shifter

H,O moderator

volume

CF2+Pobyboron Insertion / Fe innerspectrum shifter

: . <
shielded irrad. 78 extraction rods
chamber
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CONCLUSION

- an ANEM prototype exists with an aluminur}

test disk and an electron gun system (under

commissioning) for thermal tests ;

« the basic design of the beam-optics of ANEM and QMN are

completed;

« SLOWNE on hold. Only feasibility studies the SLOWNE neutron

production targets has been performed

Oulrlpresent goaldisito complete a technical design study of the
whole LINUS facility (LSNS and NEPIR), a necessary step to obtain
approval and funding for the final executive design, before

construction phase.
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The end

Thank you for your attention

Extra slides follow
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Extra slides
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Forward (0°) neutrons

o= — L ] 70MeV
* 1

r>'\65
8]
The mean energy of the = [INCL4/ABLA model
neutrons under the peak and 3>
the peak shape are degraded Scj >0 o— —— 1 1 50 Mev
by the target. ™ ! 1
8_40
Figure on the right: value 5 > — 1 : ;
of the neutron peak energy & 22 L ——0 35 Mev
+ FWHM/2 20 | |
1 2 3 4 5
thickness of Be (mm)
4,0E+09
e 70 MeV
| INCL4/ABLA model ///’
3,0E+09 1 5 50 Mev If the target is thin the neutron

neutron yield in peak (n srt pAl)

2,5E+09

2,0E+09

1,5E+09

1,0E+09

5,0E+08

0,0E+00

flux scales linearly with the
xz//(5 35 Mev thickness of the target (more

nuclel).

Figure on the left: yield of

neutrons in the energy peak

thickness of Be (mm)

s | (nsrtpAt)

Luca Silvestrin luca.silvestrin@unipd.it g gm




Energy spectrum of the
Novel composite Target (PbBe variant)

o _ L
T T o~
2 _ E Broad evaporation peak
g‘ E flat 8 Ep_ 70 Mev -.g-u:-r / ¥ F
° S SNIRELARY D =
= . \ ® b Fast neutrons!
e E wo .Mf#'*‘&l. Rl
£ | B — No moderators
Z 3 |
: z Be 23% == 3
Neutron energy, MeV
Neutron energy, MeV Pb 77%
1507 Points simulation BePb —) Atmospheric neutrons at sea level New York
't“;rg;"t from - Red curve JESD89A fit - integrated flux E > 1 MeV = 21 cm hr!
R =
acceleration 8 17 R L
factor = 3x108 = Lethargy representation
for Iprotons = 1pA 5
é 1E-8
= i q Acceleration factor i T
= 3 x 108 ~ — LANSCE/ICE
1E-9 n 105 _lf" mms (70 MeV simple 5mm W slab) i
| . £ .--\ IST;”,"’\‘,Z’SILT,TO
E . . JESD89A standard (fit)
Neutron energy, MeV w ;
E 5 a& .
-5 m—— Spectrum at 6 m
T I from BePb
X \ compaosite target
c M 3 Eproton = 70 MeV
Acceleration factors of
few 10° can be achieved 0 !
Wlth feW tens Of “A 1 Ll Ll L] IIIII1'IO L] L] T IIII1I'60 T Tﬁr“'r;loloo
Neutron energy (MeV)
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Neutrons produced in the atmosphere

106

Pole 12km

O
[95]

)
[m ]

equator sea .~

1073 - ' Pole sea level /

10-6 4

10-9

Differential Flux (neutrons ecms 'MeV™)

10-12 . . . , ; ; ; i
1ge 198 104 10?3 10° 10 100 10t 102 108

Neutron Energy (MeV)
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W(p,n)@Ep=70 MeV. MCNPX-LA150 Library
1014
10" ' — o — LA150-0 deg x 1000
10" \ — & LA150-15 deg x 100
o s O S S LA150-30 deg x 10
10" \ e ﬁ%ﬂﬁ% — 7 — LA150-45 deg
" 10" ) B N % — LA150-60 deg x 0,1
7 . U e, T %) — ¥ — LA150-90 deg x 0,01
Uj‘ 108 \%ﬁn&%mmmm rnmﬁ% - -«1
T, 10 ™ e J. Esposito
2 10 Sl s T (LNL)
E 10° B ™ e *Pow, o |
-l P e
L 10° %Mm
10°* P |
Sl 1
10° Ein
10° ————————
0 8 16 24 32 40 48 56 64 72
Neutron Energy [MeV]
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RG-Graphite
reflector

Bver kil

Pb spectrum shifter

Proton beam pipe

W conical target

120 cm

Irradiation
chamber




t4 [o
] \ Proton beam

200ns, 125kHz Pulse and Selection
e Distribution Station

50 2500

repeat every 20ms (50Hz) A conceptual scheme of

10 5 distribution of proton pulses

of different time structures to

e ___ | the epithermal-, thermal- and
repeat every 40ms (25H2)  g|d neutron applications. The

< 500 s > time axes are not in scale,

numbers are ballpark figures.

Y
buncher ~2ns

LENOS
Li target, no moderator In the TOF mode we assume a chopper, upstream of the RFQ, will pulse
@ the proton beam at 125 kHz with a pulse width (FWHM) of ~200 ns.

Y
defocus to 10em x 106 beam These short pulses are nominally delivered to the LENOS target station and

thermal neutron source shorten further to 1-2 ns by a buncher.
Be target, H,O moder

The following time appropriation takes place:

}@ defocus to 10em x 10embeam | L+ @ clock starts at t; for the accumulation of the short pulses to achieve a

@ cold neutron source pulse width of ~10 us in conjunction with the defocusing of the beam

BSEnget, ICE, MOSSHaor to a cross-section of 10cm x 10cm.

2. Afterward this proton pulse is delivered to TNTS. This process is to
repeat every 20 ms so as to enable a short pulse (SP) neutron source
running at 50 Hz.

3. After each SP the clock starts at t, to accumulate a long pulse (LP) of
~500 us width, defocused, then to feed the CNTS. This process
repeats every 40 ms for a LP cold neutron source running at 25 Hz.
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The LSNS suite will be useful for the widest scientific community

possible, making it unique in Italy and very useful for European

research, both applied, industrial and basic.

It will lead a class of ABC Neutron Sources to replenish the neutron

capacity surrendered by the retired reactor sources.
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E: 5 MM
Equivalent Stress
Type: Equivalent (won-Mises) Stress
Unit: kAP a
Time: 1

Tiles instead of solid disk

624,34 Max
409,43
3,62
00,21

318

255,18
192,37
129,56
na,7a1
3,9394 Min

Tungsten tiles
5 mm thick
Rotation speed: 2 Hz
Beam power: 4 kW

200,00 {rrrn
|

50,00 150,00
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LSNS is a green-field (no constraints) project

GOAL: ensure an expansive neutron R&D landscape and a thriving community of neutron users.

By optimizing key elements:
O High brilliance and compactness;
O beam-line and user station layout;
O synergy in conjunction with
= user engagement (involved in design, construction, management,...)
= international collaborations
= attendant by assets at LNL and Italian Universities (Padova,...)

.... LSNS can quickly become the world’s first cost-effective ABC NS to serve users

nuclear science,

experimental nuclear astrophysics,
materials research,

life sciences,

medical therapy,

nuclear instrumentation,

cultural heritage

Education (e.g. training new generations).

across different fields and disciplines:
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Interest

QMN fields with E, > 20 MeV (maybe lower)
are important reference neutron fields

Used to study energy dependent
neutron interaction mechanisms with matter

USERS:
« electronics industry for critical applications in hostile neutron fields (sensitive electronics
anywhere, airlines, accelerator halls in hospitals, industry and research facilities, space...);

* electronics (ASICs) for HEP and nuclear physics experiments;

* high-energy and nuclear physicists (cross-section measurements; MC development);
» manufacturers of radiation instrumentation (energy response and calibration);
* radiation physicists (studies for: fast neutron treatments; modeling of exposure of patients

to secondary neutrons at proton accelerators; bench-mark shielding experiments).

HBS Science Case Workshop April 6 - Unkel Luca Silvestrin luca.silvestrin@unipd.it ke




“Wrong-energy tail” correction

The number of neutron-induced effects due to forward going neutrons can be corrected by
subtracting the number of effects at angles (typically in the 15°-30° range).

lene \“\

Steel

concrete

I-Themba multi-angle collimator

|ted< I I

collimator system

Target
chamber

Bending magnet

The 7Li(p; n)7Be reaction is employed
to produce QMN in 25-200 MeY energy
range.

A2 m thick steel collimator with
openings at 6 = 0°, 4°, 82, 12° and 16°
shapes 10 cm x 10 cm give quadratic
beams at 8 m. The collimator is lined
by a layer of borated wax and
polyethylene.

movable
colllmator

RIKEN-like - |

- 300

i L

Shiftrespect
Lo 07 direction

Ax = R(l —cosé)

Moveable
collimator

Beam dump
(faraday cup)
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Off-axis
Device Under Test
{SEE counter)

T — Neutron

monifors

_ Device Under
Test
{SEE counter)

edata can be taken simultaneously at 0° and one or
two standard angles (say 15° and 30°)
» flexibility for intermediate values

* but challenging to design magnet/target system




Neutron spectrum inside irradiation chamber MCNPX calculation results

“Accelerator-driven Systems (ADS) and
Fast Reactors (FR) in Advanced Nuclear

Fuel Cycles: A comparative study” NEA- FARETRA facility,
OEDC, 2002 MCNPX simulated spectrum

Neutron spectrumn (per Lethargy)

0.30
Sadjum-caoled Care 1M
[| L) —— [Commereisl pe) L
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020 booeeeeend 5T ] B
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h i
I
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Results of simulation: Moderation Efficiency (10 eV-10 MeV) : ~ 510
Integral neutron flux: .=~ 1.0-10* cm2s?

TR
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SPES cyclotron hall

Supplementary
shielding

\SW|tch|ng magnet
not shown

'\«Proton energy degrader

Defl. magnet
Beam dump i
N |

Fe colllmatorﬂl
R

hamber for p;roton -irradiation

---I | I- SlowNe .“.

o e

Movable neutron



“Compact” Accelerator-driven Neutron Sources (CANS)

Non-spallation-based

» CANS have shown promising capabilities in bridging the capacity insufficiency

and the expanse of cross-disciplinary neutron applications. @

Proton Beam Neutron beam

Patient

Typical BNCT system

LNL SPES 70 MeV prdtn cyclotron

» NOTE! However, the majority of CANS are not new.
In addition many originated as proof-of-principle demos at existing accelerator systems where

the infrastructure for a broad and growing range of applications under variant

configurations was never anticipated. @ — @
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LINUS and its two parts:

1) Legnaro Slow Neutron Source (LSNS): a state-of-the-art E! |
Accelerator driven, Brilliant, and Compact Neutron Source (ABC NS). \EEE?
'&‘ !

It will deliver cold, thermal, and epithermal neutrons.

2) NEutron and Proton Irradiation facility (NEPIR): driven by the high

power SPES 35-70 MeV proton cyclotron, it will consist of four subsystems:

I.  QMN: quasi mono-energetic neutrons in the (20)35-70 MeV range

.  ANEM: atmospheric-like neutrons in the 1-70 MeV range

Luca Silvestrin luca.silvestrin@unipd.it
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Practical general-purpose neutron facilities are of two types:

1. research reactors (fission reactions)
2. accelerator-driven sources (non-fission nuclear reactions)

. Large High-energy accelerator spallation Seurces
b, Compact low energy: aceelerators (nen-spallation seurces:
CANS rompact™ . ccelerata r~dnv—:n , eUtren; - ources)

—— )

SPes /.

exotlc bearns for scnence\

» LINUS program foresees a low energy non-spallation source and
a higher energy mixed source.

22 Sept. 2017 - Legnaro 40th European Cyclotron Progress Meeting Luca Silvestrin luca.silvestrin@unipd.it



LSNS Is a green-field (no constraints) CANS project [;]%

GOALEEnsUreraheal thy2expantinGmeEUtron RN aNUSCaPE:
ziplel ziiipriviniel coppingltinl ey of pletiirein) Leirs)

By optimizing key elements LSNS can quickly become the world’s first cost-
effective ABC NS to serve users across different fields and disciplines:

L Compactness and high brilliance;

O Smart beam-line and user stations layout;

Q Synergy in conjunction with
= present assets at LNL, INFN labs and Italian Universities
= international collaborations

= user engagement (concept, design, construction, management,...)

nuclear science,

experimental nuclear astrophysics,
materials research,

life sciences,

medical therapy,

nuclear instrumentation,

neutron instruments for spectrometric and dosimetric
characterization of neutron fields,

e cultural heritage,

e Education (e.g. training new generations),
fundamental physics (ultracold neutrons).

R
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Conceptual zyou of LIS
RFQ

 Proton beam PSDS
(Pulse and Selection Distribution Station)

Q CNTS (Cold Neutron Target Station)
* Be target
Cryogenic moderator solid methane
I T N o Reflector (graphite or water)

future p-acceloratr * Up to 6 ports to experimental halls
upgrade

LENOS

Q TNTS (Thermal Neutron Target Station)

@:rs GM . Identicgl design to CNTS but with water
I at qmblent temperature
x\o * Initially three ports
O LENOS (astrophysics)

O BNCT (oncologic research)

« Mild radioactivity by low-energy protons ( < 5 MeV)

e Modular structure

 CW, and both Short Pulse (SP) and Long Pulse (LP) options

* Cryogenic and gas handling systems for hydrogenous moderators

CNTS and TNTS are ideal for experimental validation of novel moderator systems 5




Maxwell-Boltzmann
Legnaro NeutrOn Source (LENQS)

v

|_
R
1
1
v

,_
@

e}
3

* Aneutron irradiation facility for nuclear astrophysics studies and data validation for
energy and non-energy applications.

« Based on pulsed low energy high current 5 MeV, 50 mA proton beam of RFQ of LNL

» Goal: produce an unprecedented neutron flux, precisely shaped to a Maxwell-

Boltzmann energy distribution.

;.il{t‘;rgEt Sample I
RFQ 5 MeV, 50 mA " Courtesy:
250 kw Protons .
Ep>1.88 MeV P. Mastinu
Energy Shaper 5 ///"5//. NEUTRONS (L N L)
|
p e 7 ”11' _-Lr'-. T Iuwl| A-801

—— Maxwellian Fit T

I Magnet | 7 11‘ !I R'=0,998, kT=30 keV/ 1
E el Possibility

K SPES RIB

AN 0000 4 : : y -
\\‘\\: O W 0 e 1@ IS W0 I 20 P W

Heutron Energy (ke

ANIE (art. unils)
° =
2 =
] X % a

Protons Ep<1.88 MeV
Other line or beam dump Neutron Flux =

5:10"0 n/(s-cm?)
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NEPIR chicane option

SPES hall A9, side view of the
Fast Neutron Line (QMN+ANEM)

ground level

The ANEM target system
will exchange position
with the QMN multi-
target system and will

share the 0° line.

I TN

Chicane to:

 avoid neutrons towards cyclotron

* have test point at same distance from
floor and ceiling (minimize albedo)

* use degradator for lower energy neutrons

308
g

118.5 ;

@ neutron beam fine level [\'7|
< N

320

150

T en
i 2! false fcor level
.

b
2411

At the test point, the neutron
beam is 1.50 m from the

false floor (3.91 m from the

- bottom cement floor). The

optics: two dipole magnets,

two quadrupole doublets, a
single quadrupole, and a
bending magnet for the
spent proton beam. The
supplementary shielding is

not shown.
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