

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

CERN-INTC-2012-003 ; INTC-P-320

Neutron capture cross section of ²⁵Mg and its astrophysical implications

<u>**C. Massimi^{1,2}**</u>, E. Berthoumieux³, N. Colonna⁴, F. Gunsing³, F. Kappeler⁵, P. Koehler⁶, P.M. Milazzo⁷, F. Mingrone^{1,2}, P. Schillebeeckx⁸, G. Vannini^{1,2} and The n_TOF Collaboration (www.cern.ch/ntof)

¹Dipartimento di Fisica, Alma Mater Studiorum Università di Bologna, Italy
²Istituto Nazionale di Fisica Nucleare, Bologna, Italy
³CEA/Saclay - IRFU, Gif-sur-Yvette, France
⁴Istituto Nazionale di Fisica Nucleare, Bari, Italy
⁵Karlsruhe Institute of Technology (KIT), Campus Nord, Institut fur Kernphysik, Germany
⁶Oak Ridge National Laboratory, Physics Division, Oak Ridge, USA
⁷Istituto Nazionale di Fisica Nucleare, Trieste, Italy
⁸EC-JRC, Institute for Reference Materials and Measurements, Belgium

Spokesperson: C. Massimi Technical coordinator: E. Berthoumieux

Outline

- Introduction / Motivations
 - Nuclear Astrophysics: s process
 - Constraints on ²²Ne(α ,n)²⁵Mg
- Previous campaign: results and limitations
- Proposal
 - $-{}^{25}Mg(n,\gamma)$ and ${}^{25}Mg(n,tot)$

Introduction

The *s* process and Mg stable isotopes

Introduction

The s process and Mg stable isotopes

Introduction

The s process and Mg stable isotopes

Motivations

- ^{25,26}Mg are the most important neutron poisons due to neutron capture on Mg stable isotopes in competition with neutron capture on ⁵⁶Fe that is the basic s-process seed for the production of heavy isotopes (and on heavier elements).
- 2. Several attempts to **determine the rate** for the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction either through direct ${}^{22}Ne(\alpha,n){}^{25}Mg$ measurement or indirectly, via ${}^{26}Mg(\gamma,n){}^{25}Mg$ or charged particle transfer reactions. In both cases **the cross-section is very small** in the energy range of interest.
 - The main uncertainty of the reaction rate determination comes from the poorly known property of the states in ²⁶Mg.

From neutron measurements $\rightarrow J^{\pi}$ for the ²⁶Mg states

Motivation

Constraints for the ²²Ne(α,n)²⁵Mg reaction

Element	Spin/ parity
²² Ne	0+
⁴ He	0+

$$\vec{J} = \vec{I} + \vec{i} + \vec{\ell}$$
$$\vec{J} = 0 + \vec{\ell}$$

Only **natural-parity** (0⁺, 1⁻, 2⁺, 3⁻, 4⁺, ...) **states in** ²⁶Mg can participate in the $^{22}Ne(\alpha,n)^{25}Mg$ reaction

Motivation

Constraints for the ²²Ne(α,n)²⁵Mg reaction

Element	Spin/ parity
²⁵ Mg	5/2+
n	1/2+

$$\vec{J} = \vec{I} + \vec{i} + \vec{\ell}$$
$$\vec{J} = 2 + \vec{\ell} \quad \vec{J} = 3 + \vec{\ell}$$

s-wave $\rightarrow J^{\pi}= \underline{2^{+}}, 3^{+}$ p-wave $\rightarrow J^{\pi}= \underline{1^{-}}, 2^{-}, \underline{3^{-}}, 4^{-}$ d-wave $\rightarrow J^{\pi}= \underline{0^{+}}, 1^{+}, \underline{2^{+}}, 3^{+}, \underline{4^{+}}, 5^{+}$ States in ²⁶Mg populated by ²⁵Mg(n, γ) reaction

Previous campaign: results and limitations

MACS

Thermal energy (keV)	n_TOF*	Literature	
	²⁴ Mg(n,g)		
5	0.21±0.04 b	0.11 b	
30	3.8±0.2 b	3.3±0.4 b	
80	2.8±0.2 b	2.7 b	
	²⁵ Mg(n,g)		
5	3.5±0.4 b	4.8 b	
30	4.1±0.6 b	6.4±0.4 b	
80	1.9±0.3 b	4.4 b	
	²⁶ Mg(n,g)		
5	0.087±0.001 b	0.103 b	
30	0.14±0.01 b	0.126±0.009 b	
80	0.37±0.04 b	0.226 b	

* Submmitted to Phys Rev. C

s-process abundances

Abundance distribution of the weak *s* process

Small impact on AGB abundances

* Submmitted to Phys Rev. C

 279.6 ± 0.2

 311.57 ± 0.01

Constraints for the		² °wg(n,γ) ^{2°} ivig
	E_n (keV)	ℓJ^{π}	Γ_{γ} (eV)
22 Ne(α .n) ²⁵ Mg reactio	-154.25	0 2+	6.5
	\longrightarrow 19.86 ± 0.05	$0 (2^+)$	1.7 ± 0.2
	62.727 ± 0.003	1^a $1^+ a$	4.1 ± 0.7
	\longrightarrow 72.66 \pm 0.03	$0 2^+$	2.5 ± 0.4
	79.29 ± 0.03	$0 3^+$	3.3 ± 0.4
	81.117 ± 0.001	0^{b} (2) ⁺	3 ± 2
	93.60 ± 0.02	(1) (1^{-})	2.3 ± 2
	100.03 ± 0.02	$0 3^+$	1.0 ± 0.1
	$[101.997 \pm 0.009]$	$[1]$ $[2^-]$	$[0.2 \pm 0.1]$
	$[107.60 \pm 0.02]$	$[0]^{b}$ $[3^{+}]$	$[0.3 \pm 0.1]$
	156.34 ± 0.02	(1) (2^{-})	6.1 ± 0.4
	188.347 ± 0.009	$0 (2)^+$	1.7 ± 0.2
	194.482 ± 0.009	$(1) 4^{(-)}$	0.2 ± 0.1
	200.20 ± 0.03	1^{b} 1^{-}	0.3 ± 0.3
	200.944 ± 0.006	(2) (2^+)	3.0 ± 0.3
	203.878 ± 0.001	(1) (2^{-})	0.8 ± 0.3
	208.27 ± 0.01	(1) (1^{-})	1.2 ± 0.5
	211.14 ± 0.05	(1) (2^{-})	3.1 ± 0.7
	226.255 ± 0.001	(1) (1^{-})	4 ± 3
	242.47 ± 0.02	$(1) (1^{-})$	6 ± 4
	\longrightarrow 244.60 \pm 0.03	$1 (1-)^{c}$	3.5 ± 0.6
* Submmitted to	245.552 ± 0.002	(1) (1^{-})	2.3 ± 2
Phys Rev. C	253.63 ± 0.01	(1) (1^{-})	3.1 ± 2.7
	261.84 ± 0.03	$(1) 4^{(-)}$	2.6 ± 0.4

 Γ_n (eV)

30000

 2310 ± 30

 28 ± 5

 5080 ± 80

 1560 ± 80

 0.8 ± 0.7

 0.6 ± 0.2

 5240 ± 40

 $[4 \pm 3]$

 $[2 \pm 1]$ 5520 ± 20

 590 ± 20

 1730 ± 20

 1410 ± 60

 0.7 ± 0.7

 2 ± 1 230 ± 20

 12400 ± 100

 0.4 ± 0.2 0.3 ± 0.2

 50 ± 20

 0.5 ± 0.2

 0.1 ± 0.1

 3490 ± 60

 3290 ± 50

 (240 ± 10)

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

 (2^+)

 (5^+)

 1.9 ± 0.7

 (0.84 ± 0.09)

(0)

(2)

Constraints for the				
	E_n (keV)	ℓJ^{π}	Γ_{γ} (eV)	Γ_n (eV)
²² Ne(α ,n) ²⁵ Mg reaction	-154.25 $\rightarrow 19.86 \pm 0.05$	$\begin{array}{ccc} 0 & 2^+ \\ 0 & 2^+ \end{array}$	$6.5 \\ 1.7 \pm 0.2$	$30000 \\ 2310 \pm 30$
$u_{i} = 1 \\ u_{i} = 1 \\ u_{i$	62.727 ± 0.003 72.66 ± 0.03 79.29 ± 0.03 81.117 ± 0.001 93.60 ± 0.02 100.03 ± 0.02 $[101.997 \pm 0.009]$ $[107.60 \pm 0.02]$ 156.34 ± 0.02 188.347 ± 0.009 194.482 ± 0.009 200.20 ± 0.03 200.944 ± 0.006 203.878 ± 0.001 208.27 ± 0.01 211.14 ± 0.05 226.255 ± 0.001 242.47 ± 0.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 4.1 \pm 0.7 \\ 2.5 \pm 0.4 \\ 3.3 \pm 0.4 \\ 3 \pm 2 \\ 2.3 \pm 2 \\ 1.0 \pm 0.1 \\ [0.2 \pm 0.1] \\ [0.3 \pm 0.1] \\ 6.1 \pm 0.4 \\ 1.7 \pm 0.2 \\ 0.2 \pm 0.1 \\ 0.3 \pm 0.3 \\ 3.0 \pm 0.3 \\ 3.0 \pm 0.3 \\ 1.2 \pm 0.5 \\ 3.1 \pm 0.7 \\ 4 \pm 3 \\ 6 \pm 4 \end{array}$	28 ± 5 5080 ± 80 1560 ± 80 0.8 ± 0.7 0.6 ± 0.2 5240 ± 40 $[4 \pm 3]$ $[2 \pm 1]$ 5520 ± 20 1730 ± 20 1410 ± 60 0.7 ± 0.7 2 ± 1 230 ± 20 12400 ± 100 0.4 ± 0.2 0.2 ± 0.2
* Submmitted to Phys Rev. C	→ 244.60 ± 0.03 245.552 ± 0.002 253.63 ± 0.01 261.84 ± 0.03 279.6 ± 0.2 311.57 ± 0.01	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.5 \pm 0.6 \\ 2.3 \pm 2 \\ 3.1 \pm 2.7 \\ 2.6 \pm 0.4 \\ 1.9 \pm 0.7 \\ (0.84 \pm 0.09) \end{array}$	50 ± 20 0.5 ± 0.2 0.1 ± 0.1 3490 ± 60 3290 ± 50 (240 ± 10)

²⁵Mg(n,γ)²⁶Mg

Constraints for the		²⁵ W	l g(n ,γ)²ºMg	
	E_n (keV)	l	J^{π}	Γ_{γ} (eV)	$\Gamma_n \ (eV)$
22 Ne(α .n) 23 Mg reaction	-154.25	0	2^{+}	6.5	30000
	19.86 ± 0.05	0	2^{+}	1.7 ± 0.2	2310 ± 30
	62.727 ± 0.003	1^a	$1^{+ a}$	4.1 ± 0.7	28 ± 5
	72.66 ± 0.03	0	2^{+}	2.5 ± 0.4	5080 ± 80
	79.29 ± 0.03	0	3^{+}	3.3 ± 0.4	1560 ± 80
	81.117 ± 0.001	0^b	$(2)^{+}$	3 ± 2	0.8 ± 0.7
	93.60 ± 0.02	(1)	(1^{-})	2.3 ± 2	0.6 ± 0.2
	100.03 ± 0.02	0	3^{+}	1.0 ± 0.1	5240 ± 40
	$[101.997 \pm 0.009]$	[1]	$[2^{-}]$	$[0.2\pm0.1]$	$[4 \pm 3]$
	$[107.60 \pm 0.02]$	$[0]^{b}$	$[3^+]$	$[0.3 \pm 0.1]$	$[2 \pm 1]$
$I\pi$ uncortain	156.34 ± 0.02	(1)	(2^{-})	6.1 ± 0.4	5520 ± 20
JUNCERTAIN	188.347 ± 0.009	0	$(2)^+$	1.7 ± 0.2	590 ± 20
-	194.482 ± 0.009	(1)	$4^{(-)}$	0.2 ± 0.1	1730 ± 20
	200.20 ± 0.03	10	1-	0.3 ± 0.3	1410 ± 60
2	200.944 ± 0.006	(2)	(2^{+})	3.0 ± 0.3	0.7 ± 0.7
↓ (-	203.878 ± 0.001	(1)	(2^{-})	0.8 ± 0.3	2 ± 1
	208.27 ± 0.01	(1)	(1^{-})	1.2 ± 0.5	230 ± 20
NO information on	211.14 ± 0.05	(1)	(2^{-})	3.1 ± 0.7	12400 ± 100
	226.255 ± 0.001	(1)	(1^{-})	4 ± 3	0.4 ± 0.2
$^{22}Ne(\alpha n)^{25}Ma$	242.47 ± 0.02	(1)	(1^{-})	6 ± 4	0.3 ± 0.2
	244.60 ± 0.03	1	1^{-c}	3.5 ± 0.6	50 ± 20
	245.552 ± 0.002	(1)	(1^{-})	2.3 ± 2	0.5 ± 0.2
	253.63 ± 0.01	(1)	(1^{-})	3.1 ± 2.7	0.1 ± 0.1
	261.84 ± 0.03	(1)	4(-)	2.6 ± 0.4	3490 ± 60
	279.6 ± 0.2	(0)	(2^{+})	1.9 ± 0.7	3290 ± 50
	311.57 ± 0.01	(2)	(5^{+})	(0.84 ± 0.09)	(240 ± 10)

Alma mater studiorum - Università <u>di Bologna</u>

.....

22 Ne(α ,n) 25 Mg

Previous campaign: limitations

1. Sample

- MgO, powder sample
- Transmission experiment on a ^{nat}Mg sample
- 2. n_TOF facility Phase-I:
 - Water as neutron moderator

Proposal: improvements

- 1. Sample
 - metal ²⁵Mg-enriched sample
 - Transmission on the ²⁵Mgenriched sample
- 2. n_TOF facility Phase-II:
 - Borated water as neutron moderator
 - New and improved detectors

- Water moderator
- Borated water moderator

Proposal

We propose to measure the **neutron capture cross section** of the stable ²⁵Mg isotope. This experiment aims at the improvement of existing results for nuclear astrophysics:

- s-process path and abundances;
- constraints on the neutron source of the s process.

Additional measurements at the neutron time-of-flight facility GELINA operated by the European Commission

- Transmission measurement on the same sample will improve the analysis of the capture cross section eventually allowing for the spin assignment.
- Moreover dedicated measurements with HPGe detectors to detect single γ-ray transitions could be performed.

Proposal

Experimental program:

- Self-supporting (i. e. not compressed powder in a can) metal ²⁵Mg-enriched sample:
 - Material: Mg-25;
 - Chemical Form: Mg metal disc (3-cm diameter);
 - Isotopic enrichment: 97.86%;
 - Quantity: 8.8 g;
- The cross section will be determined up to about 300 keV by means of C₆D₆ liquid scintillators

Proposal

Experimental program:

The request for the **number of protons** is based on previous measurements with C_6D_6 :

- 1.6x10¹⁸ protons \rightarrow ²⁵Mg
- 0.4x10¹⁸ protons → Au (normalization), C (background), Pb (background), sample holder (background)

According to the previous capture measurements we request a total of **2x10**¹⁸ protons

Cristian Massimi Dipartimento di Fisica massimi@bo.infn.it

www.unibo.it

Constraints for the ²²Ne(α,n)²⁵Mg reaction

R. Longland *et al.,* Phys. Rev. C **80,** 055803, 2009 "Nuclear resonance fluorescence"

Before the 62.727-keV resonance was thought to be 1⁻

²⁵Mg(n,γ)²⁶Mg

$E_n \; (\text{keV})$	l	J^{π}	Γ_{γ} (eV)	Γ_n (eV)
-154.25	0	2^{+}	6.5	30000
19.86 ± 0.05	0	2^{+}	1.7 ± 0.2	2310 ± 30
\rightarrow 62.727 \pm 0.003	1^a	$1^{+ a}$	4.1 ± 0.7	28 ± 5
72.66 ± 0.03	0	2^{+}	2.5 ± 0.4	5080 ± 80
\rightarrow 79.29 ± 0.03	0	3+	3.3 ± 0.4	1560 ± 80
81.117 ± 0.001	0^b	$(2)^+$	3 ± 2	0.8 ± 0.7
93.60 ± 0.02	(1)	(1^{-})	2.3 ± 2	0.6 ± 0.2
\rightarrow 100.03 ± 0.02	0	3+	1.0 ± 0.1	5240 ± 40
$[101.997 \pm 0.009]$	[1]	$[2^{-}]$	$[0.2 \pm 0.1]$	$[4 \pm 3]$
$[107.60 \pm 0.02]$	$[0]^{b}$	[3+]	$[0.3 \pm 0.1]$	$[2 \pm 1]$
156.34 ± 0.02	(1)	(2^{-})	6.1 ± 0.4	5520 ± 20
188.347 ± 0.009	Ò	$(2)^{+}$	1.7 ± 0.2	590 ± 20
194.482 ± 0.009	(1)	$4^{(-)}$	0.2 ± 0.1	1730 ± 20
200.20 ± 0.03	1^{b}	1^{-}	0.3 ± 0.3	1410 ± 60
200.944 ± 0.006	(2)	(2^+)	3.0 ± 0.3	0.7 ± 0.7
203.878 ± 0.001	(1)	(2^{-})	0.8 ± 0.3	2 ± 1
208.27 ± 0.01	(1)	(1^{-})	1.2 ± 0.5	230 ± 20
211.14 ± 0.05	(1)	(2^{-})	3.1 ± 0.7	12400 ± 100
226.255 ± 0.001	(1)	(1^{-})	4 ± 3	0.4 ± 0.2
242.47 ± 0.02	(1)	(1^{-})	6 ± 4	0.3 ± 0.2
244.60 ± 0.03	1	1^{-c}	3.5 ± 0.6	50 ± 20
245.552 ± 0.002	(1)	(1^{-})	2.3 ± 2	0.5 ± 0.2
253.63 ± 0.01	(1)	(1^{-})	3.1 ± 2.7	0.1 ± 0.1
261.84 ± 0.03	(1)	$4^{(-)}$	2.6 ± 0.4	3490 ± 60
279.6 ± 0.2	(0)	(2^+)	1.9 ± 0.7	3290 ± 50
311.57 ± 0.01	(2)	(5^+)	(0.84 ± 0.09)	(240 ± 10)

Constraints for the ²²Ne(α,n)²⁵Mg reaction

The reaction rate of the neutron source can be calculated:

$$N_A \langle \sigma v \rangle_r \cong \frac{1.54 \times 10^5 (2J+1) \Gamma_{\alpha}}{A^{3/2} T_9^{3/2} e^{11.605 E_R/T_9}}$$

²⁵Mg(n,γ)²⁶Mg

$E_n \; (\text{keV})$	l	J^{π}	$\Gamma_{\gamma} ~(\mathrm{eV})$	$\Gamma_n \ (eV)$
-154.25	0	2^{+}	6.5	30000
19.86 ± 0.05	0	2^{+}	1.7 ± 0.2	2310 ± 30
62.727 ± 0.003	1^a	$1^{+ a}$	4.1 ± 0.7	28 ± 5
72.66 ± 0.03	0	2^{+}	2.5 ± 0.4	5080 ± 80
79.29 ± 0.03	0	3^{+}	3.3 ± 0.4	1560 ± 80
81.117 ± 0.001	0^b	$(2)^{+}$	3 ± 2	0.8 ± 0.7
93.60 ± 0.02	(1)	(1^{-})	2.3 ± 2	0.6 ± 0.2
100.03 ± 0.02	0	3^{+}	1.0 ± 0.1	5240 ± 40
$[101.997 \pm 0.009]$	[1]	$[2^{-}]$	$[0.2 \pm 0.1]$	$[4 \pm 3]$
$[107.60 \pm 0.02]$	$[0]^{b}$	[3+]	$[0.3 \pm 0.1]$	$[2 \pm 1]$
156.34 ± 0.02	(1)	(2^{-})	6.1 ± 0.4	5520 ± 20
188.347 ± 0.009	0	$(2)^{+}$	1.7 ± 0.2	590 ± 20
194.482 ± 0.009	(1)	$4^{(-)}$	0.2 ± 0.1	1730 ± 20
200.20 ± 0.03	1^{b}	1^{-}	0.3 ± 0.3	1410 ± 60
200.944 ± 0.006	(2)	(2^{+})	3.0 ± 0.3	0.7 ± 0.7
203.878 ± 0.001	(1)	(2^{-})	0.8 ± 0.3	2 ± 1
208.27 ± 0.01	(1)	(1^{-})	1.2 ± 0.5	230 ± 20
211.14 ± 0.05	(1)	(2^{-})	3.1 ± 0.7	12400 ± 100
226.255 ± 0.001	(1)	(1^{-})	4 ± 3	0.4 ± 0.2
242.47 ± 0.02	(1)	(1^{-})	6 ± 4	0.3 ± 0.2
244.60 ± 0.03	1	1^{-c}	3.5 ± 0.6	50 ± 20
245.552 ± 0.002	(1)	(1^{-})	2.3 ± 2	0.5 ± 0.2
253.63 ± 0.01	(1)	(1^{-})	3.1 ± 2.7	0.1 ± 0.1
261.84 ± 0.03	(1)	$4^{(-)}$	2.6 ± 0.4	3490 ± 60
279.6 ± 0.2	(0)	(2^+)	1.9 ± 0.7	3290 ± 50
311.57 ± 0.01	(2)	(5^+)	(0.84 ± 0.09)	(240 ± 10)

Constraints for the ²²Ne(α,n)²⁵Mg reaction

The reaction rate of the neutron source can be calculated:

$$N_A \langle \sigma v \rangle_r \cong \frac{1.54 \times 10^5 (2J + 1)\Gamma_{\alpha}}{A^{3/2} T_9^{3/2} e^{11.605 E_R T_9}}$$

•E_R from (n,γ) • Γ_{α} No information from neutron spectroscopy \rightarrow different values assumed

²⁵Mg(n,γ)²⁶Mg

$E_n \; (\text{keV})$	l	J^{π}	$\Gamma_{\gamma} ~(\mathrm{eV})$	$\Gamma_n \ (eV)$
-154.25	0	2^{+}	6.5	30000
19.86 ± 0.05	0	2^{+}	1.7 ± 0.2	2310 ± 30
62.727 ± 0.003	1^a	$1^{+ a}$	4.1 ± 0.7	28 ± 5
72.66 ± 0.03	0	2^{+}	2.5 ± 0.4	5080 ± 80
79.29 ± 0.03	0	3^{+}	3.3 ± 0.4	1560 ± 80
81.117 ± 0.001	0^b	$(2)^+$	3 ± 2	0.8 ± 0.7
93.60 ± 0.02	(1)	(1^{-})	2.3 ± 2	0.6 ± 0.2
100.03 ± 0.02	0	3^{+}	1.0 ± 0.1	5240 ± 40
$[101.997 \pm 0.009]$	[1]	$[2^{-}]$	$[0.2 \pm 0.1]$	$[4 \pm 3]$
$[107.60 \pm 0.02]$	$[0]^{b}$	$[3^+]$	$[0.3 \pm 0.1]$	$[2 \pm 1]$
156.34 ± 0.02	(1)	(2^{-})	6.1 ± 0.4	5520 ± 20
188.347 ± 0.009	0	$(2)^+$	1.7 ± 0.2	590 ± 20
194.482 ± 0.009	(1)	$4^{(-)}$	0.2 ± 0.1	1730 ± 20
200.20 ± 0.03	16	1-	0.3 ± 0.3	1410 ± 60
200.944 ± 0.006	(2)	(2^+)	3.0 ± 0.3	0.7 ± 0.7
203.878 ± 0.001	(1)	(2^{-})	0.8 ± 0.3	2 ± 1
208.27 ± 0.01	(1)	(1^{-})	1.2 ± 0.5	230 ± 20
211.14 ± 0.05	(1)	(2^{-})	3.1 ± 0.7	12400 ± 100
226.255 ± 0.001	(1)	(1^{-})	4 ± 3	0.4 ± 0.2
242.47 ± 0.02	(1)	(1^{-})	6 ± 4	0.3 ± 0.2
244.60 ± 0.03	1	1^{-c}	3.5 ± 0.6	50 ± 20
245.552 ± 0.002	(1)	(1^{-})	2.3 ± 2	0.5 ± 0.2
253.63 ± 0.01	(1)	(1^{-})	3.1 ± 2.7	0.1 ± 0.1
261.84 ± 0.03	(1)	$4^{(-)}$	2.6 ± 0.4	3490 ± 60
279.6 ± 0.2	(0)	(2^+)	1.9 ± 0.7	3290 ± 50
311.57 ± 0.01	(2)	(5^+)	(0.84 ± 0.09)	(240 ± 10)

Constraints for the ²²Ne(α ,n)²⁵Mg reaction

The ²⁵Mg(n, α)²²Ne (Q-value=480 keV) crosssection is linked to the ²²Ne(α ,n)²⁵Mg

$$\frac{\sigma_{(a,b)}}{\sigma_{(b,a)}} = \frac{m_b m_B E_{bB} (2J_b + 1)(2J_B + 1)}{m_a m_A E_{aA} (2J_a + 1)(2J_A + 1)}$$

Energy region of interest: $0 < E_n < 300 \text{ keV}$