

High accuracy measurement of the ²³⁵U(n,f) reaction cross-section in the 10-30 keV neutron energy range in EAR1@n_TOF

M. Barbagallo¹, M. Mastromarco¹, N. Colonna¹, L. Cosentino², P. Schillebeeckx³, E. Berthoumieux⁴, P. Finocchiaro², A. Musumarra², C. Massimi⁵, P. Milazzo⁶, G. Tagliente¹, J. Andrzejewski⁷, A. Tsinganis⁸, R. Vlastou⁸ and the n_TOF Collaboration⁹

Spokeperson: M. Barbagallo

Technical coordinator: O. Aberle

CERN INTC meeting, June 25th 2014

Why ²³⁵U(n,f) @ 10-30 keV?

• ²³⁵U(n,f) cross-section is often (*i.e. nearly always*) used as a reference in cross-section measurements of major and minor actinides.

- ²³⁵U(n,f) based detectors are widely used to measure neutron fluxes (MACS..).
- 235 U(n,f) cross section in the energy range proposed can have a significant impact on fast critical reactor and sub-critical ADS.

The n_TOF Phase-2 neutron flux was accurately determined using 5 different detectors and 3 different converting reactions.

• The analysis of the neutron flux has revealed a discrepancy between results based on ${}^{235}U(n,f)$ cross section and results based on ${}^{6}Li(n,t)\alpha$ and ${}^{10}B(n,\alpha){}^{7}Li$, <u>regardless of the detection system used (*)</u>.

• Also the comparison with the simulations shows such a discrepancy in the range 10-30 keV.

*M. Barbagallo, C. Guerrero, A. Tsinganis, D. Tarrio et al. Eur. Phys. J. A (2013) 49:156 **A.D. Carlson et al., Nucl. Data Sheet 119, 3215 (2009)

In the energy range of interest the flux was determined combining the results from SiMon and MGAS(¹⁰B) detectors.

The uncertainty in the ${}^{6}Li(n,t)$ and ${}^{10}B(n,\alpha)$ angular distributions and on the particles selection prevents us from drawing a conclusion on this issue.

In the energy range of interest the flux was determined combining the results from SiMon and MGAS(¹⁰B) detectors.

The uncertainty in the ${}^{6}\text{Li}(n,t)$ and ${}^{10}B(n,\alpha)$ angular distributions and on the particles selection prevents us from drawing a conclusion on this issue.

M. Barbagallo, CERN INTC meeting, June 25th 2014

Evaluations in general are in agreement, although **"resonance-like" structures** are reported only in ENDF/B-VII.1 library.

Only in this region, the uncertainties have been increased by a **factor 4** in the latest release of ENDF/B-VII data library.

Status of evaluations and experimental data

$^{235}U(n,\gamma)$ cross section was recently measured at Los Alamos relative to $^{235}U(n,f)$ using DANCE+PPAC

The 10% difference attributed to ${}^{235}U(n,\gamma)$ cross section could rather be explained by the overestimation of the **fission cross section**, consistent with our finding.

We propose to measure in **EAR1** the ${}^{235}U(n,f)$ cross section together with the reference reactions ${}^{6}Li(n,t)$ and ${}^{10}B(n,\alpha)$.

Samples:

- 200-300 $\mu g/cm^2$ $\,^6\text{Li}\,$ (C-Li-C or LiF) $\,$ (LNS)
- 0.5 μ m ¹⁰BC₄ (possibly directly on the detector or on both sides of the backing) (CERN)
- 500 μg/cm² ²³⁵U (IRMM)

Protons request

In order to reach 1% accuracy in the energy range of interest and to observe resonance structures we ask for 1.5×10^{18} protons on target

M. Barbagallo, CERN INTC meeting, June 25th 2014

In order to reach 1% accuracy in the energy range of interest and to observe resonance structures we ask for 1.5×10^{18} protons on target

M. Barbagallo, CERN INTC meeting, June 25th 2014

Thanks for your attention

Back up slides

Expected energy deposition ⁶Li

200 μ g/cm² ⁶Li in C sandwich deposited on 1.5 μ m Mylar backing

Expected energy deposition¹⁰B

125 μ g/cm² ¹⁰B₄C on 1.5 μ m Mylar backing

Expected energy deposition ²³⁵U

Bleed-trough SiMon

Bleed-trough MGAS

Status of evaluations and experimental data

Courtesy of P.Schillebeeckx, IRMM

Evaluated n_TOF Flux

M. Barbagallo, CERN INTC meeting, June 25th 2014